894 resultados para Human Factors


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human buccal micronucleus cytome assay (BMCyt) is one of the most widely used techniques to measure genetic damage in human population studies. Reducing protocol variability, assessing the role of confounders, and estimating a range of reference values are research priorities that will be addressed by the HUMNXL, collaborative study. The HUMNXL, project evaluates the impact of host factors, occupation, life-style, disease status, and protocol features on the occurrence of MN in exfoliated buccal cells. In addition, the study will provide a range of reference values for all cytome endpoints. A database of 5424 subjects with buccal MN values obtained from 30 laboratories worldwide was compiled and analyzed to investigate the influence of several conditions affecting MN frequency. Random effects models were mostly used to investigate MN predictors. The estimated spontaneous MN frequency was 0.74 parts per thousand (95% CI 0.52-1.05). Only staining among technical features influenced MN frequency, with an abnormal increase for non-DNA-specific stains. No effect of gender was evident, while the trend for age was highly significant (p < 0.001). Most occupational exposures and a diagnosis of cancer significantly increased MN and other endpoints frequencies. MN frequency increased in heavy smoking (>= 40 cig/day. FR = 1.37:95% CI 1.03-.82) and decreased with daily fruit consumption (FR = 0.68; 95% CI 0.50-0.91). The results of the HUMNXL, project identified priorities for validation studies, increased the basic knowledge of the assay, and contributed to the creation of a laboratory network which in perspective may allow the evaluation of disease risk associated with MN frequency. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

O papilomavírus humano (HPV) está associado a um largo espectro de lesões em humanos e tem sido ligado à carcinogênese oral. O objetivo deste estudo foi investigar a presença do DNA do HPV em pacientes com carcinoma espinocelular de lábio e correlacioná-la com aspectos clínicos e fatores de risco. Foram estudados 33 pacientes com carcinoma espinocelular de lábio. Destes, 30 pacientes foram positivos para o gene da beta-globina humana e então foram testados para o DNA do HPV com uso da reação em cadeia de polimerase em duas etapas (PCR e nPCR) com os oligonucleotídeos iniciadores MY11/MY09 e GP5+/ GP6+. O DNA do HPV foi detectado em 43,33% dos 30 pacientes analisados. Não houve associação com os fatores de risco analisados.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Toxoplasma gondii infection may lead to important pathological questions, especially in rural areas, where several sources of infection exist. Therefore, it is important to determine risk factors in order to establish adequate prophylactic measures. The present study aimed to assess the prevalence and risk factors involved in human toxoplasmosis infection in a rural community, in Eldorado, Mato Grosso do Sul State, Brazil. This community was composed of 185 farms - with 671 inhabitants - from which 20 were randomly chosen. In these farms, blood samples were collected from rural workers, who also answered a risk factor questionnaire. Serum samples were analyzed by means of direct agglutination test for the detection of anti-Toxoplasma gondii antibodies. From 73 samples collected, 79.45% were positive. None of the studied variables was significantly associated with the prevalence of the infection. However, among the individuals who reported eyesight impairments, 94.4% had anti-T. gondii antibodies, compared with 74.0% who did not report eyesight changes (p = 0.0594). Moreover, most individuals in the study (68.20%) were older than 18 years and presented 84.44% positivity, compared with 66.67% of positive individuals younger than 18 years old. We were able to conclude that a high prevalence of antibodies did not imply significant associations with the risk factors studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. The long control region (LCR) of human papillomavirus (HPV) regulates early gene transcription by interaction with several viral and cellular transcription factors (TFs). Methods. To identify novel TFs that could influence early expression of HPV type 18 (HPV-18) and HPV type 16 (HPV-16), a high-throughput transfection array was used. Results. Among the 704 TFs tested, 28 activated and 36 inhibited the LCR of HPV-18 by more than 2-fold. For validation, C33 cells were cotransfected with increasing amounts of selected TF expression plasmids in addition to LCR-luciferase vectors of different molecular variants of HPV-18 and HPV-16. Among the TFs identified, only GATA3, FOXA1, and MYC have putative binding sites within the LCR sequence, as indicated using the TRANSFAC database. Furthermore, we demonstrated FOXA1 and MYC in vivo binding to the LCR of both HPV types using chromatin immunoprecipitation assay. Conclusions. We identified new TFs implicated in the regulation of the LCR of HPV-18 and HPV-16. Many of these factors are mutated in cancer or are putative cancer biomarkers and could potentially be involved in the regulation of HPV early gene expression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] Increased skeletal muscle capillary density would be a logical adaptive mechanism to chronic hypoxic exposure. However, animal studies have yielded conflicting results, and human studies are sparse. Neoformation of capillaries is dependent on endothelial growth factors such as vascular endothelial growth factor (VEGF), a known target gene for hypoxia inducible factor 1 (HIF-1). We hypothesised that prolonged exposure to high altitude increases muscle capillary density and that this can be explained by an enhanced HIF-1alpha expression inducing an increase in VEGF expression. We measured mRNA levels and capillary density in muscle biopsies from vastus lateralis obtained in sea level residents (SLR; N=8) before and after 2 and 8 weeks of exposure to 4100 m altitude and in Bolivian Aymara high-altitude natives exposed to approximately 4100 m altitude (HAN; N=7). The expression of HIF-1alpha or VEGF mRNA was not changed with prolonged hypoxic exposure in SLR, and both genes were similarly expressed in SLR and HAN. In SLR, whole body mass, mean muscle fibre area and capillary to muscle fibre ratio remained unchanged during acclimatization. The capillary to fibre ratio was lower in HAN than in SLR (2.4+/-0.1 vs 3.6+/-0.2; P<0.05). In conclusion, human muscle VEGF mRNA expression and capillary density are not significantly increased by 8 weeks of exposure to high altitude and are not increased in Aymara high-altitude natives compared with sea level residents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Salmonella and Campylobacter are common causes of human gastroenteritis. Their epidemiology is complex and a multi-tiered approach to control is needed, taking into account the different reservoirs, pathways and risk factors. In this thesis, trends in human gastroenteritis and food-borne outbreak notifications in Italy were explored. Moreover, the improved sensitivity of two recently-implemented regional surveillance systems in Lombardy and Piedmont was evidenced, providing a basis for improving notification at the national level. Trends in human Salmonella serovars were explored: serovars Enteritidis and Infantis decreased, Typhimurium remained stable and 4,[5],12:i:-, Derby and Napoli increased, suggesting that sources of infection have changed over time. Attribution analysis identified pigs as the main source of human salmonellosis in Italy, accounting for 43–60% of infections, followed by Gallus gallus (18–34%). Attributions to pigs and Gallus gallus showed increasing and decreasing trends, respectively. Potential bias and sampling issues related to the use of non-local/non-recent multilocus sequence typing (MLST) data in Campylobacter jejuni/coli source attribution using the Asymmetric Island (AI) model were investigated. As MLST data become increasingly dissimilar with increasing geographical/temporal distance, attributions to sources not sampled close to human cases can be underestimated. A combined case-control and source attribution analysis was developed to investigate risk factors for human Campylobacter jejuni/coli infection of chicken, ruminant, environmental, pet and exotic origin in The Netherlands. Most infections (~87%) were attributed to chicken and cattle. Individuals infected from different reservoirs had different associated risk factors: chicken consumption increased the risk for chicken-attributed infections; animal contact, barbecuing, tripe consumption, and never/seldom chicken consumption increased that for ruminant-attributed infections; game consumption and attending swimming pools increased that for environment-attributed infections; and dog ownership increased that for environment- and pet-attributed infections. Person-to-person contacts around holiday periods were risk factors for infections with exotic strains, putatively introduced by returning travellers.