952 resultados para Hulthen potentials
Resumo:
Microblogging is an emergent adolescent and adult literacy practice that has become popularized through platforms such as Twitter, Plurk and Jaiku, in the rise of Web 2.0 – “the social web”. Yet the potentials of microblogging for literacy learning in educational contexts is currently underexplored in the research and literature. This article draws on new research with 150 adolescent and adult participants in school and university contexts, which was made possible through cross-disciplinary collaboration between specialists English and Information and Communication Technologies (ICT) educators. Strategies are provided for teachers to establish their own microblogging networks, with suggested activities to enhance the literacy learning of adolescents in educational contexts.
Resumo:
What is a record producer? There is a degree of mystery and uncertainty about just what goes on behind the studio door. Some producers are seen as Svengali-like figures manipulating artists into mass consumer product. Producers are sometimes seen as mere technicians whose job is simply to set up a few microphones and press the record button. Close examination of the recording process will show how far this is from a complete picture. Artists are special—they come with an inspiration, and a talent, but also with a variety of complications, and in many ways a recording studio can seem the least likely place for creative expression and for an affective performance to happen. The task of the record producer is to engage with these artists and their songs and turn these potentials into form through the technology of the recording studio. The purpose of the exercise is to disseminate this fixed form to an imagined audience—generally in the hope that this audience will prove to be real. Finding an audience is the role of the record company. A record producer must also engage with the commercial expectations of the interests that underwrite a recording. This dissertation considers three fields of interest in the recording process: the performer and the song; the technology of the recording context; and the commercial ambitions of the record company—and positions the record producer as a nexus at the interface of all three. The author reports his structured recollection of five recordings, with three different artists, that all achieved substantial commercial success. The processes are considered from the author’s perspective as the record producer, and from inception of the project to completion of the recorded work. What were the processes of engagement? Do the actions reported conform to the template of nexus? This dissertation proposes that in all recordings the function of producer/nexus is present and necessary—it exists in the interaction of the artistry and the technology. The art of record production is to engage with these artists and the songs they bring and turn these potentials into form.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Most research on numerical development in children is behavioural, focusing on accuracy and response time in different problem formats. However, Temple and Posner (1998) used ERPs and the numerical distance task with 5-year-olds to show that the development of numerical representations is difficult to disentangle from the development of the executive components of response organization and execution. Here we use the numerical Stroop paradigm (NSP) and ERPs to study possible executive interference in numerical processing tasks in 6–8-year-old children. In the NSP, the numerical magnitude of the digits is task-relevant and the physical size of the digits is task-irrelevant. We show that younger children are highly susceptible to interference from irrelevant physical information such as digit size, but that access to the numerical representation is almost as fast in young children as in adults. We argue that the developmental trajectories for executive function and numerical processing may act together to determine numerical development in young children.
Resumo:
Urban development in the first decade of the 21st century has faced many challenges ranging from rapid to shrinking urbanisation, from emerging knowledge economy to global division of labour and from globalisation to climate change. Along with these challenges new concepts, such as essentialism, environmentalism and dematerialism, are emerged and started to influence the way urban development plans are prepared and visions for the development of cities are made. Beyond this, scholars, practitioners and decision-makers have also started to discuss the need for an new urban planning and development approach in order to achieve a development that is sustainable and knowledge-based. Limited successful examples of alternative planning and development approaches showcased potentials of moving towards a new plan-making mindset in the era of knowledge economy. This paper presents a new urban planning and development approach that is taking application ground in many parts of the globe, namely knowledge-based urban development. After providing the theoretical foundation and conceptual framework of knowledge-based urban development the paper discusses whether knowledge-based development of cities is a myth or a reality.
Resumo:
This dissertation is based on theoretical study and experiments which extend geometric control theory to practical applications within the field of ocean engineering. We present a method for path planning and control design for underwater vehicles by use of the architecture of differential geometry. In addition to the theoretical design of the trajectory and control strategy, we demonstrate the effectiveness of the method via the implementation onto a test-bed autonomous underwater vehicle. Bridging the gap between theory and application is the ultimate goal of control theory. Major developments have occurred recently in the field of geometric control which narrow this gap and which promote research linking theory and application. In particular, Riemannian and affine differential geometry have proven to be a very effective approach to the modeling of mechanical systems such as underwater vehicles. In this framework, the application of a kinematic reduction allows us to calculate control strategies for fully and under-actuated vehicles via kinematic decoupled motion planning. However, this method has not yet been extended to account for external forces such as dissipative viscous drag and buoyancy induced potentials acting on a submerged vehicle. To fully bridge the gap between theory and application, this dissertation addresses the extension of this geometric control design method to include such forces. We incorporate the hydrodynamic drag experienced by the vehicle by modifying the Levi-Civita affine connection and demonstrate a method for the compensation of potential forces experienced during a prescribed motion. We present the design method for multiple different missions and include experimental results which validate both the extension of the theory and the ability to implement control strategies designed through the use of geometric techniques. By use of the extension presented in this dissertation, the underwater vehicle application successfully demonstrates the applicability of geometric methods to design implementable motion planning solutions for complex mechanical systems having equal or fewer input forces than available degrees of freedom. Thus, we provide another tool with which to further increase the autonomy of underwater vehicles.
Resumo:
Urban development in the 21st decade of the 21st century has faced many challenges ranging from rapid to shrinking urbanisation, from emerging knowledge economy to global division of labour and from globalisation to climate change. Along with with these challenges new concepts, such as essentialism, environmentalism and dematerialism, are emerged and started to influence the way urban development plans are prepared and visions for the development of cities are made. Beyond this, scholars, practitioners and decision-makers have also started to discuss the need for an new urban planning and development approach in order to achieve a development that is sustainable and knowledge-based. Limited successful examples of alternative planning and development approaches showcased potentials of moving towards a new plan-making mindset in the era of knowledge economy. This paper presents a new urban planning and development approach that is taking application ground in many parts of the globe, namely knowledge-based urban development. After providing the theoretical foundation and conceptual framework of knowledge-based urban development the paper discusses whether knowledge-based development of cities is a myth or a reality.
Resumo:
Prognostics and asset life prediction is one of research potentials in engineering asset health management. We previously developed the Explicit Hazard Model (EHM) to effectively and explicitly predict asset life using three types of information: population characteristics; condition indicators; and operating environment indicators. We have formerly studied the application of both the semi-parametric EHM and non-parametric EHM to the survival probability estimation in the reliability field. The survival time in these models is dependent not only upon the age of the asset monitored, but also upon the condition and operating environment information obtained. This paper is a further study of the semi-parametric and non-parametric EHMs to the hazard and residual life prediction of a set of resistance elements. The resistance elements were used as corrosion sensors for measuring the atmospheric corrosion rate in a laboratory experiment. In this paper, the estimated hazard of the resistance element using the semi-parametric EHM and the non-parametric EHM is compared to the traditional Weibull model and the Aalen Linear Regression Model (ALRM), respectively. Due to assuming a Weibull distribution in the baseline hazard of the semi-parametric EHM, the estimated hazard using this model is compared to the traditional Weibull model. The estimated hazard using the non-parametric EHM is compared to ALRM which is a well-known non-parametric covariate-based hazard model. At last, the predicted residual life of the resistance element using both EHMs is compared to the actual life data.
Resumo:
The indoline dyes D102, D131, D149, and D205 have been characterized when adsorved on fluorine-doped tin oxide (FTO) and TiO2 electrode surfaces. Adsorption from 50:50 acetonitrile - tert-butanol onto flourine-doped tin oxide (FTO) allows approximate Langmuirian binding constants of 6.5 x 10(4), 2.01 x 10(3), 2.0 x 10(4), and 1.5 x 10(4) mol-1 dm3, respectively, to be determined. Voltammetric data obtained in acetonitrile/0.1 M NBu4PF6 indicate reversible on-electron oxidation at Emid = 0.94, 0.91, 0.88, and 0.88 V vs Ag/AgCI(3 M KCI), respectively, with dye aggregation (at high coverage) causing additional peak features at more positive potentials. Slow chemical degradation processes and electron transfer catalysis for iodine oxidation were observed for all four oxidezed indolinium cations. When adsorbed onto TiO2 nanoparticle films (ca. 9nm particle diameter and ca.3/um thickness of FTO0, reversible voltammetric responses with Emid = 1.08, 1.156, 0.92 and 0.95 V vs Ag/AgCI(3 M KCI), respectively, suggest exceptionally fast hole hopping diffusion (with Dapp > 5 x 10(-9) m2 s-1) for adsorbed layers of four indoline dyes, presumably due to pie-pie stacking in surface aggregates. Slow dye degradation is shown to affect charge transport via electron hopping. Spectrelectrochemical data for the adsorbed indoline dyes on FTO-TiO2 revealed a red-shift of absorption peaks after oxidation and the presence of a strong charge transfer band in the near-IR region. The implications of the indoline dye reactivity and fast hole mobility for solar cell devices are discussed.
Resumo:
The hysteresis modulation for power electronic converters is attractive in many different applications because of its unmatched dynamic response and wide command-tracking bandwidth. Its application and beneftis for two-level converters are well understood, but the extension of this strategy to multilevel converters is still under development. This paper summarizes and reviews the various hysteresis modulation approaches available in the literature for multilevel converters. The pros and cons of various techniques are described and compared for tracking the reference signal in order to attain an adequate switching optimization, excellent dynamic responses and high accuracy in steady-state operation. By using the recently developed multilevel hysteresis modulation approaches the advantages of using several accessible dc potentials in a multilevel inverter has been fully exploited. All of these hysteresis modulation approaches are testing for tracking a current reference when applied to a fivelevel inveter. The relevant simulation and experimental result are also presented. This study will provide a useful framweork and point of reference for the future development of hysteresis modulation for multilevel converters.
Resumo:
The Electrocardiogram (ECG) is an important bio-signal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. The HRV signal can be used as a base signal to observe the heart's functioning. These signals are non-linear and non-stationary in nature. So, higher order spectral (HOS) analysis, which is more suitable for non-linear systems and is robust to noise, was used. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, we have extracted seven features from the heart rate signals using HOS and fed them to a support vector machine (SVM) for classification. Our performance evaluation protocol uses 330 subjects consisting of five different kinds of cardiac disease conditions. We demonstrate a sensitivity of 90% for the classifier with a specificity of 87.93%. Our system is ready to run on larger data sets.
Resumo:
The Dark Ages are generally held to be a time of technological and intellectual stagnation in western development. But that is not necessarily the case. Indeed, from a certain perspective, nothing could be further from the truth. In this paper we draw historical comparisons, focusing especially on the thirteenth and fourteenth centuries, between the technological and intellectual ruptures in Europe during the Dark Ages, and those of our current period. Our analysis is framed in part by Harold Innis’s2 notion of "knowledge monopolies". We give an overview of how these were affected by new media, new power struggles, and new intellectual debates that emerged in thirteenth and fourteenth century Europe. The historical salience of our focus may seem elusive. Our world has changed so much, and history seems to be an increasingly far-from-favoured method for understanding our own period and its future potentials. Yet our seemingly distant historical focus provides some surprising insights into the social dynamics that are at work today: the fracturing of established knowledge and power bases; the democratisation of certain "sacred" forms of communication and knowledge, and, conversely, the "sacrosanct" appropriation of certain vernacular forms; challenges and innovations in social and scientific method and thought; the emergence of social world-shattering media practices; struggles over control of vast networks of media and knowledge monopolies; and the enclosure of public discursive and social spaces for singular, manipulative purposes. The period between the eleventh and fourteenth centuries in Europe prefigured what we now call the Enlightenment, perhaps moreso than any other period before or after; it shaped what the Enlightenment was to become. We claim no knowledge of the future here. But in the "post-everything" society, where history is as much up for sale as it is for argument, we argue that our historical perspective provides a useful analogy for grasping the wider trends in the political economy of media, and for recognising clear and actual threats to the future of the public sphere in supposedly democratic societies.
Resumo:
The Dark Ages are generally held to be a time of technological and intellectual stagnation in western development. But that is not necessarily the case. Indeed, from a certain perspective, nothing could be further from the truth. In this paper we draw historical comparisons, focusing especially on the thirteenth and fourteenth centuries, between the technological and intellectual ruptures in Europe during the Dark Ages, and those of our current period. Our analysis is framed in part by Harold Innis’s2 notion of "knowledge monopolies". We give an overview of how these were affected by new media, new power struggles, and new intellectual debates that emerged in thirteenth and fourteenth century Europe. The historical salience of our focus may seem elusive. Our world has changed so much, and history seems to be an increasingly far-from-favoured method for understanding our own period and its future potentials. Yet our seemingly distant historical focus provides some surprising insights into the social dynamics that are at work today: the fracturing of established knowledge and power bases; the democratisation of certain "sacred" forms of communication and knowledge, and, conversely, the "sacrosanct" appropriation of certain vernacular forms; challenges and innovations in social and scientific method and thought; the emergence of social world-shattering media practices; struggles over control of vast networks of media and knowledge monopolies; and the enclosure of public discursive and social spaces for singular, manipulative purposes. The period between the eleventh and fourteenth centuries in Europe prefigured what we now call the Enlightenment, perhaps moreso than any other period before or after; it shaped what the Enlightenment was to become. We claim no knowledge of the future here. But in the "post-everything" society, where history is as much up for sale as it is for argument, we argue that our historical perspective provides a useful analogy for grasping the wider trends in the political economy of media, and for recognising clear and actual threats to the future of the public sphere in supposedly democratic societies.
Resumo:
Online learning algorithms have recently risen to prominence due to their strong theoretical guarantees and an increasing number of practical applications for large-scale data analysis problems. In this paper, we analyze a class of online learning algorithms based on fixed potentials and nonlinearized losses, which yields algorithms with implicit update rules. We show how to efficiently compute these updates, and we prove regret bounds for the algorithms. We apply our formulation to several special cases where our approach has benefits over existing online learning methods. In particular, we provide improved algorithms and bounds for the online metric learning problem, and show improved robustness for online linear prediction problems. Results over a variety of data sets demonstrate the advantages of our framework.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.