919 resultados para Hsp70 transcript
Resumo:
OBJECTIVES: Acute respiratory distress syndrome is a common and highly lethal inflammatory lung syndrome. We previously have shown that an adenoviral vector expressing the heat shock protein (Hsp)70 (AdHSP) protects against experimental sepsis-induced acute respiratory distress syndrome in part by limiting neutrophil accumulation in the lung. Neutrophil accumulation and activation is modulated, in part, by the nuclear factor-kappaB (NF-kappaB) signal transduction pathway. NF-kappaB activation requires dissociation/degradation of a bound inhibitor, IkappaBalpha. IkappaBalpha degradation requires phosphorylation by IkappaB kinase, ubiquitination by the SCFbeta-TrCP (Skp1/Cullin1/Fbox beta-transducing repeat-containing protein) ubiquitin ligase, and degradation by the 26S proteasome. We tested the hypothesis that Hsp70 attenuates NF-kappaB activation at multiple points in the IkappaBalpha degradative pathway. DESIGN: Laboratory investigation. SETTING: University medical center research laboratory. SUBJECTS: Adolescent (200 g) Sprague-Dawley rats and murine lung epithelial-12 cells in culture. INTERVENTIONS: Lung injury was induced in rats via cecal ligation and double puncture. Thereafter, animals were treated with intratracheal injection of 1) phosphate buffer saline, 2) AdHSP, or 3) an adenovirus expressing green fluorescent protein. Murine lung epithelial-12 cells were stimulated with tumor necrosis factor-alpha and transfected. NF-kappaB was examined using molecular biological tools. MEASUREMENTS AND MAIN RESULTS: Intratracheal administration of AdHSP to rats with cecal ligation and double puncture limited nuclear translocation of NF-kappaB and attenuated phosphorylation of IkappaBalpha. AdHSP treatment reduced, but did not eliminate, phosphorylation of the beta-subunit of IkappaB kinase. In vitro kinase activity assays and gel filtration chromatography revealed that treatment of sepsis-induced lung injury with AdHSP induced fragmentation of the IkappaB kinase signalosome. This stabilized intermediary complexes containing IkappaB kinase components, IkappaBalpha, and NF-kappaB. Cellular studies indicate that although ubiquitination of IkappaBalpha was maintained, proteasomal degradation was impaired by an indirect mechanism. CONCLUSIONS: Treatment of sepsis-induced lung injury with AdHSP limits NF-kappaB activation. This results from stabilization of intermediary NF-kappaB/IkappaBalpha/IkappaB kinase complexes in a way that impairs proteasomal degradation of IkappaBalpha. This novel mechanism by which Hsp70 attenuates an intracellular process may be of therapeutic value.
Resumo:
Dengue is an acute febrile disease caused by the mosquito-borne dengue virus (DENV) that according to clinical manifestations can be classified as asymptomatic, mild or severe dengue. Severe dengue cases have been associated with an unbalanced immune response characterised by an over secretion of inflammatory cytokines. In the present study we measured type I interferon (IFN-I) transcript and circulating levels in primary and secondary DENV infected patients. We observed that dengue fever (DF) and dengue haemorrhagic fever (DHF) patients express IFN-I differently. While DF and DHF patients express interferon-α similarly (52,71 ± 7,40 and 49,05 ± 7,70, respectively), IFN- β were associated with primary DHF patients. On the other hand, secondary DHF patients were not able to secrete large amounts of IFN- β which in turn may have influenced the high-level of viraemia. Our results suggest that, in patients from our cohort, infection by DENV serotype 3 elicits an innate response characterised by higher levels of IFN- β in the DHF patients with primary infection, which could contribute to control infection evidenced by the low-level of viraemia in these patients. The present findings may contribute to shed light in the role of innate immune response in dengue pathogenesis.
Resumo:
We improved, evaluated, and used Sanger sequencing for quantification of single nucleotide polymorphism (SNP) variants in transcripts and gDNA samples. This improved assay resulted in highly reproducible relative allele frequencies (e.g., for a heterozygous gDNA 50.0+/-1.4%, and for a missense mutation-bearing transcript 46.9+/-3.7%) with a lower detection limit of 3-9%. It provided excellent accuracy and linear correlation between expected and observed relative allele frequencies. This sequencing assay, which can also be used for the quantification of copy number variations (CNVs), methylations, mosaicisms, and DNA pools, enabled us to analyze transcripts of the FBN1 gene in fibroblasts and blood samples of patients with suspected Marfan syndrome not only qualitatively but also quantitatively. We report a total of 18 novel and 19 known FBN1 sequence variants leading to a premature termination codon (PTC), 26 of which we analyzed by quantitative sequencing both at gDNA and cDNA levels. The relative amounts of PTC-containing FBN1 transcripts in fresh and PAXgene-stabilized blood samples were significantly higher (33.0+/-3.9% to 80.0+/-7.2%) than those detected in affected fibroblasts with inhibition of nonsense-mediated mRNA decay (NMD) (11.0+/-2.1% to 25.0+/-1.8%), whereas in fibroblasts without NMD inhibition no mutant alleles could be detected. These results provide evidence for incomplete NMD in leukocytes and have particular importance for RNA-based analyses not only in FBN1 but also in other genes.
Resumo:
The HtrA surface protease is involved in the virulence of many pathogens, mainly by its role in stress resistance and bacterial survival. Staphylococcus aureus encodes two putative HtrA-like proteases, referred to as HtrA(1) and HtrA(2). To investigate the roles of HtrA proteins in S. aureus, we constructed htrA(1), htrA(2), and htrA(1) htrA(2) insertion mutants in two genetically different virulent strains, RN6390 and COL. In the RN6390 context, htrA(1) inactivation resulted in sensitivity to puromycin-induced stress. The RN6390 htrA(1) htrA(2) mutant was affected in the expression of several secreted virulence factors comprising the agr regulon. This observation was correlated with the disappearance of the agr RNA III transcript in the RN6390 htrA(1) htrA(2) mutant. The virulence of this mutant was diminished in a rat model of endocarditis. In the COL context, both HtrA(1) and HtrA(2) were essential for thermal stress survival. However, only HtrA(1) had a slight effect on exoprotein expression. The htrA mutations did not diminish the virulence of the COL strain in the rat model of endocarditis. Our results indicate that HtrA proteins have different roles in S. aureus according to the strain, probably depending on specific differences in the regulation of virulence factor and stress protein expression. We propose that HtrA(1) and HtrA(2) contribute to pathogenicity by controlling the production of certain extracellular factors that are crucial for bacterial dissemination, as revealed in the RN6390 background. We speculate that HtrA proteins act in the agr-dependent regulation pathway by assuring folding and/or maturation of some surface components of the agr system.
Resumo:
Streptococcus gordonii alpha-phosphoglucomutase, which converts glucose 6-phosphate to glucose 1-phosphate, is encoded by pgm. The pgm transcript is monocistronic and is initiated from a sigma(A)-like promoter. Mutants with a gene disruption in pgm exhibited an altered cell wall muropeptide pattern and a lower teichoic acid content, and had reduced fitness both in vitro and in vivo. In vitro, the reduced fitness included reduced growth, reduced viability in the stationary phase and increased autolytic activity. In vivo, the pgm-deficient strain had a lower virulence in a rat model of experimental endocarditis.
Resumo:
The interaction of Escherichia coli RNA polymerase with supercoiled DNA was visualized by cryo-electron microscopy of vitrified samples and by classical electron microscopy methods. We observed that when E. coli RNA polymerase binds to a promoter on supercoiled DNA, this promoter becomes located at an apical loop of the interwound DNA molecule. During transcription RNA polymerase shifts the apical loop along the DNA, always remaining at the top of the moving loop. This relationship between RNA polymerase and the supercoiled template precludes circling of the RNA polymerase around the DNA and prevents the growing RNA transcript from becoming entangled with the template DNA.
Resumo:
While one of the main objectives of adolescence is to achieve autonomy, for the specific population of adolescents with a chronic illness (CI), the struggle for autonomy is accentuated by the limits implied by their illness. However, little is known concerning the way their parents manage and cope with their children's autonomy acquisition. Our aim was to identify the needs and preoccupations of parents of adolescents with CI in coping with their children's autonomy acquisition and to determine whether mothers and fathers coped differently. Using a qualitative approach, 30 parents of adolescents with CI participated in five focus groups. Recruitment took place in five specialized pediatric clinics from our university hospital. Thematic analysis was conducted. Transcript analyses suggested four major categories of preoccupations, those regarding autonomy acquisition, giving or taking on autonomy, shared management of treatment and child's future. Some aspects implied differences between mothers' and fathers' viewpoints and ways of experiencing this period of life. Letting go can be hard for the father, mother, adolescent or all three. Helping one or the other can in turn improve family functioning as a whole. Reported findings may help health professionals better assist parents in managing their child's acquisition of autonomy.
Resumo:
Insect eggs represent a threat for the plant as hatching larvae rapidly start with their feeding activity. Using a whole-genome microarray, we studied the expression profile of Arabidopsis (Arabidopsis thaliana) leaves after oviposition by two pierid butterflies. For Pieris brassicae, the deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after oviposition. The transcript signature was similar to that observed during a hypersensitive response or in lesion-mimic mutants, including the induction of defense and stress-related genes and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by Pieris rapae caused a similar although much weaker transcriptional response. Analysis of the jasmonic acid and salicylic acid mutants coi1-1 and sid2-1 indicated that the response to egg deposition is mostly independent of these signaling pathways. Histochemical analyses showed that egg deposition is causing a localized cell death, accompanied by the accumulation of callose, and the production of reactive oxygen species. In addition, activation of the pathogenesis-related1::beta-glucuronidase reporter gene correlated precisely with the site of egg deposition and was also triggered by crude egg extract. This study provides molecular evidence for the detection of egg deposition by Arabidopsis plants and suggests that oviposition causes a localized response with strong similarity to a hypersensitive response.
Resumo:
? The arbuscular mycorrhizal symbiosis is arguably the most ecologically important eukaryotic symbiosis, yet it is poorly understood at the molecular level. To provide novel insights into the molecular basis of symbiosis-associated traits, we report the first genome-wide analysis of the transcriptome from Glomus intraradices DAOM 197198. ? We generated a set of 25,906 nonredundant virtual transcripts (NRVTs) transcribed in germinated spores, extraradical mycelium and symbiotic roots using Sanger and 454 sequencing. NRVTs were used to construct an oligoarray for investigating gene expression. ? We identified transcripts coding for the meiotic recombination machinery, as well as meiosis-specific proteins, suggesting that the lack of a known sexual cycle in G. intraradices is not a result of major deletions of genes essential for sexual reproduction and meiosis. Induced expression of genes encoding membrane transporters and small secreted proteins in intraradical mycelium, together with the lack of expression of hydrolytic enzymes acting on plant cell wall polysaccharides, are all features of G. intraradices that are shared with ectomycorrhizal symbionts and obligate biotrophic pathogens. ? Our results illuminate the genetic basis of symbiosis-related traits of the most ancient lineage of plant biotrophs, advancing future research on these agriculturally and ecologically important symbionts.
Resumo:
Epstein-Barr virus (EBV) has been consistently associated with multiple sclerosis (MS), but whether this virus is a trigger of MS remains undetermined. Recently, EBV-infected B cells recognized by activated CD8_ T cells have been detected in the meninges of autopsied MS patients. In addition, a strong EBV-specific CD8_ T cell response in the blood of patients with MS of recent onset was reported. Here, to further explore the putative relationship between MS and EBV, we assessed the EBV-specific cellular and humoral immune responses in the blood and the cerebrospinal fluid (CSF) of patients with early MS or other neurological diseases, separated into inflammatory (IOND) and non-inflammatory (NIOND) groups. The MS non-associated neurotropic herpesvirus cytomegalovirus (CMV) served as a control. Fifty-eight study subjects were enrolled, including 44 patients (13 with early MS (onset of MS less than one year prior to the assay), 15 with IOND and 16 with NIOND) in the immunological arm of the study. The cellular immune response was investigated using a functional CFSE cytotoxic T lymphocyte (CTL) assay performed with short-term cultured EBV- or CMVspecific effector T cells from the CSF and the blood. The humoral immune response specific for these two viruses was also examined in both the blood and the CSF. The recruitment of a given virusspecific antibody in the CSF as compared to the blood was expressed as antibody indexes (AI). We found that, in the CSF of early MS patients, there was an enrichment in EBV-, but not CMV-specific, CD8_ CTL as compared to the CSF of IOND (P_ 0.003) and NIOND patients (P_0.0009), as well as compared to paired blood samples (P_0.005). Additionally, relative viral capsid antigen (VCA)-, but not EBV encoded nuclear antigen 1 (EBNA1)- or CMV-specific, AI were increased in the CSF of early MS as compared to IOND (P_0.002) or NIOND patients (P_0.008) and correlated with the EBVspecific CD8_ CTL responses in the CSF (rs_0.54, P_0.001). Fourteen additional patients were enrolled in the virological arm of the study: using semi-nested PCR, EBV-encoded nuclear RNA1 (EBER1)-a transcript expressed during all stages of EBV infection-was detected in the CSF of 2/4 early MS, but only 1/6 IOND and 0/4 NIOND patients. Altogether, our data suggest that a reactivation of EBV, but not CMV, is taking place in the central nervous system of patients with MS of recent onset. These data significantly strengthen the link between EBV and MS and may indicate a triggering role of EBV in this disease. This work was supported by grants from the Swiss National Foundation and from the Swiss Society for Multiple Sclerosis.
Resumo:
The mineralocorticoid receptor (MR) plays a crucial role in the regulation of Na(+) balance and blood pressure, as evidenced by gain of function mutations in the MR of hypertensive families. In the kidney, aldosterone binds to the MR, induces its nuclear translocation, and promotes a transcriptional program leading to increased transepithelial Na(+) transport via the epithelial Na(+) channel. In the unliganded state, MR is localized in the cytosol and part of a multiprotein complex, including heat shock protein 90 (Hsp90), which keeps it ligand-binding competent. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a benzoquinone ansamycin antibiotic that binds to Hsp90 and alters its function. We investigated whether 17-AAG affects the stability and transcriptional activity of MR and consequently Na(+) reabsorption by renal cells. 17-AAG treatment lead to reduction of MR protein level in epithelial cells in vitro and in vivo, thereby interfering with aldosterone-dependent transcription. Moreover, 17-AAG inhibited aldosterone-induced Na(+) transport, possibly by interfering with MR availability for the ligand. Finally, we identified the ubiquitin-protein ligase, COOH terminus of Hsp70-interacting protein, as a novel partner of the cytosolic MR, which is responsible for its polyubiquitylation and proteasomal degradation in presence of 17-AAG. In conclusion, 17-AAG may represent a novel pharmacological tool to interfere with Na(+) reabsorption and hypertension.
Resumo:
UEV proteins are enzymatically inactive variants of the E2 ubiquitin-conjugating enzymes that regulate noncanonical elongation of ubiquitin chains. In Saccharomyces cerevisiae, UEV is part of the RAD6-mediated error-free DNA repair pathway. In mammalian cells, UEV proteins can modulate c-FOS transcription and the G2-M transition of the cell cycle. Here we show that the UEV genes from phylogenetically distant organisms present a remarkable conservation in their exon–intron structure. We also show that the human UEV1 gene is fused with the previously unknown gene Kua. In Caenorhabditis elegans and Drosophila melanogaster, Kua and UEV are in separated loci, and are expressed as independent transcripts and proteins. In humans, Kua and UEV1 are adjacent genes, expressed either as separate transcripts encoding independent Kua and UEV1 proteins, or as a hybrid Kua–UEV transcript, encoding a two-domain protein. Kua proteins represent a novel class of conserved proteins with juxtamembrane histidine-rich motifs. Experiments with epitope-tagged proteins show that UEV1A is a nuclear protein, whereas both Kua and Kua–UEV localize to cytoplasmic structures, indicating that the Kua domain determines the cytoplasmic localization of Kua–UEV. Therefore, the addition of a Kua domain to UEV in the fused Kua–UEV protein confers new biological properties to this regulator of variant polyubiquitination.[Kua cDNAs isolated by RT-PCR and described in this paper have been deposited in the GenBank data library under accession nos. AF1155120 (H. sapiens) and AF152361 (D. melanogaster). Genomic clones containing UEV genes: S. cerevisiae, YGL087c (accession no. Z72609); S. pombe, c338 (accession no. AL023781); P. falciparum, MAL3P2 (accession no. AL034558); A. thaliana, F26F24 (accession no. AC005292); C. elegans, F39B2 (accession no. Z92834); D. melanogaster, AC014908; and H. sapiens, 1185N5 (accession no. AL034423). Accession numbers for Kua cDNAs in GenBank dbEST: M. musculus, AA7853; T. cruzi, AI612534. Other Kua-containing sequences: A. thaliana genomic clones F10M23 (accession no. AL035440), F19K23 (accession no. AC000375), and T20K9 (accession no. AC004786).