878 resultados para Hierarchical Bayesian Metaanalysis
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We studied the colour preference of isolated Nile tilapia (Oreochromis niloticus) and whether previous residence or body size can affect environmental colour choice. In the first phase, a cylindrical tank was divided into five differently coloured compartments (yellow, blue, green, white and red), a single fish was introduced into the tank and the frequency at which this fish visited each compartment was recorded over a 2-day study period. An increasingly larger fish (approx +2 cm in length each time) was then added into the tank on each of days 3, 5 and 7 (=four fish in the tank by day 7), and the frequency at which each fish visited the different compartments of the tank was observed twice a day to obtain visit frequency data on the differently sized fishes. This experiment was replicated six times. In the first phase, the solitary fish established residence inside the yellow compartment on the first and second days. Following the introduction of a larger fish, the smaller fish was displaced from the occupied compartment. Nile tilapia possibly shows this preference for yellow as a function of its visual spectral sensitivity and/or the spectral characteristics of its natural environment. Moreover, body size is an important factor in determining hierarchical dominance and territorial defence, and dominant fish chose the preferred environmental colour compartment as their territory.
Resumo:
A number of attempts have been made to obtain a clear definition of biological stress. However, in spite of the efforts, some controversies on the concept of plant stress remain. The current versions are centered either on the cause (stress factor) or on the effect (stress response) of environmental stress. The objective of this study was to contribute to the definition of stress, using a hierarchical approach. Thus, we have performed an analysis of the most usual stress concepts and tested the relevance of considering different observation scales in a study on plant response to water deficit. Seedlings of Eucalyptus grandis were grown in vitro at water potentials ranging from -0.16 to -0.6 MPa, and evaluated according to growth and biochemical parameters. Data were analyzed through principal component analysis (PCA), which pointed to a hierarchical organization in plant responses to environmental disturbances. Growth parameters (height and dry weight) are more sensitive to water deficit than biochemical ones (sugars, proline, and protein), suggesting that higher hierarchical levels were more sensitive to environmental constraints than lower hierarchical ones. We suggest that before considering an environmental fluctuation as stressful, it is necessary to take into account different levels of plant response, and that the evaluation of the effects of environmental disturbances on an organism depends on the observation scale being used. Hence, a more appropriate stress concept should consider the hierarchical organization of the biological systems, not only for a more adequate theoretical approach, but also for the improvement of practical studies on plants under stress.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider the management branch model where the random resources of the subsystem are given by the exponential distributions. The determinate equivalent is a block structure problem of quadratic programming. It is solved effectively by means of the decomposition method, which is based on iterative aggregation. The aggregation problem of the upper level is resolved analytically. This overcomes all difficulties concerning the large dimension of the main problem.
Resumo:
Mobile robots need autonomy to fulfill their tasks. Such autonomy is related whith their capacity to explorer and to recognize their navigation environments. In this context, the present work considers techniques for the classification and extraction of features from images, using artificial neural networks. This images are used in the mapping and localization system of LACE (Automation and Evolutive Computing Laboratory) mobile robot. In this direction, the robot uses a sensorial system composed by ultrasound sensors and a catadioptric vision system equipped with a camera and a conical mirror. The mapping system is composed of three modules; two of them will be presented in this paper: the classifier and the characterizer modules. Results of these modules simulations are presented in this paper.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.
Resumo:
In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.
Resumo:
The objective of this work was to evaluate the Nelore beef cattle, growth curve parameters using the Von Bertalanffy function in a nested Bayesian procedure that allowed estimation of the joint posterior distribution of growth curve parameters, their (co)variance components, and the environmental and additive genetic components affecting them. A hierarchical model was applied; each individual had a growth trajectory described by the nonlinear function, and each parameter of this function was considered to be affected by genetic and environmental effects that were described by an animal model. Random samples of the posterior distributions were drawn using Gibbs sampling and Metropolis-Hastings algorithms. The data set consisted of a total of 145,961 BW recorded from 15,386 animals. Even though the curve parameters were estimated for animals with few records, given that the information from related animals and the structure of systematic effects were considered in the curve fitting, all mature BW predicted were suitable. A large additive genetic variance for mature BW was observed. The parameter a of growth curves, which represents asymptotic adult BW, could be used as a selection criterion to control increases in adult BW when selecting for growth rate. The effect of maternal environment on growth was carried through to maturity and should be considered when evaluating adult BW. Other growth curve parameters showed small additive genetic and maternal effects. Mature BW and parameter k, related to the slope of the curve, presented a large, positive genetic correlation. The results indicated that selection for growth rate would increase adult BW without substantially changing the shape of the growth curve. Selection to change the slope of the growth curve without modifying adult BW would be inefficient because their genetic correlation is large. However, adult BW could be considered in a selection index with its corresponding economic weight to improve the overall efficiency of beef cattle production.
Resumo:
Several statistical models can be used for assessing genotype X environment interaction (GEI) and studying genotypic stability. The objectives of this research were to show how (i) to use Bayesian methodology for computing Shukla's phenotypic stability variance and (ii) to incorporate prior information on the parameters for better estimation. Potato [Solanum tuberosum subsp. andigenum (Juz. & Bukasov) Hawkes], wheat (Triticum aestivum L.), and maize (Zea mays L.) multi environment trials (MET) were used for illustrating the application of the Bayes paradigm. The potato trial included 15 genotypes, but prior information for just three genotypes was used. The wheat trial used prior information on all 10 genotypes included in the trial, whereas for the maize trial, noninformative priors for the nine genotypes was used. Concerning the posterior distribution of the genotypic means, the maize MET with 20 sites gave less disperse posterior distributions of the genotypic means than did the posterior distribution of the genotypic means of the other METs, which included fewer environments. The Bayesian approach allows use of other statistical strategies such as the normal truncated distribution (used in this study). When analyzing grain yield, a lower bound of zero and an upper bound set by the researcher's experience can be used. The Bayesian paradigm offers plant breeders the possibility of computing the probability of a genotype being the best performer. The results of this study show that although some genotypes may have a very low probability of being the best in all sites, they have a relatively good chance of being among the five highest yielding genotypes.
Resumo:
Linear mixed effects models are frequently used to analyse longitudinal data, due to their flexibility in modelling the covariance structure between and within observations. Further, it is easy to deal with unbalanced data, either with respect to the number of observations per subject or per time period, and with varying time intervals between observations. In most applications of mixed models to biological sciences, a normal distribution is assumed both for the random effects and for the residuals. This, however, makes inferences vulnerable to the presence of outliers. Here, linear mixed models employing thick-tailed distributions for robust inferences in longitudinal data analysis are described. Specific distributions discussed include the Student-t, the slash and the contaminated normal. A Bayesian framework is adopted, and the Gibbs sampler and the Metropolis-Hastings algorithms are used to carry out the posterior analyses. An example with data on orthodontic distance growth in children is discussed to illustrate the methodology. Analyses based on either the Student-t distribution or on the usual Gaussian assumption are contrasted. The thick-tailed distributions provide an appealing robust alternative to the Gaussian process for modelling distributions of the random effects and of residuals in linear mixed models, and the MCMC implementation allows the computations to be performed in a flexible manner.
Resumo:
Practical Bayesian inference depends upon detailed examination of posterior distribution. When the prior and likelihood are conjugate, this is easily carried out; however, in general, one must resort to numerical approximation. In this paper, our aim is to solve, using MAPLE, the Bayesian paradigm, for a very special data collecting procedure, known as the randomized-response technique. This allows researchers to obtain sensitive information while guaranteeing privacy to respondents. This approach intends to reduce false responses on sensitive questions. Exact methods and approximations will be compared from the accuracy point of view as well as for the computational effort.
Resumo:
A simulation study was made of the effects of mixing two evolutionary forces (natural selection and random genetic drift), combined in a single data matrix of gene frequencies, on the resulting genetic distances among populations. Twenty-one, kinds of simulated gene frequencies surfaces, for 15 populations linearly distributed over geographic space, were used to construct 21 data matrices, combining different proportions of two types of surfaces (gradients and random surfaces). These matrices were analysed by Unweighted Pair-Group Method - Arithmetic Averages (UPGMA), clustering and Principal Coordinate Analysis. The results obtained show that ordination is more accurate than UPGMA in revealing the spatial patterns in the genetic distances, in comparison with results obtained using the Mantel test comparing directly genetic and geographic distances.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)