956 resultados para Helix-coil transition
Resumo:
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.
Resumo:
We present a model in which particles (or individuals of a biological population) disperse with a rest time between consecutive motions (or migrations) which may take several possible values from a discrete set. Particles (or individuals) may also react (or reproduce). We derive a new equation for the effective rest time T˜ of the random walk. Application to the neolithic transition in Europe makes it possible to derive more realistic theoretical values for its wavefront speed than those following from the single-delayed framework presented previously [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)]. The new results are consistent with the archaeological observations of this important historical process
Resumo:
Abstract
Resumo:
We introduce a set of sequential integro-difference equations to analyze the dynamics of two interacting species. Firstly, we derive the speed of the fronts when a species invades a space previously occupied by a second species, and check its validity by means of numerical random-walk simulations. As an example, we consider the Neolithic transition: the predictions of the model are consistent with the archaeological data for the front speed, provided that the interaction parameter is low enough. Secondly, an equation for the coexistence time between the invasive and the invaded populations is obtained for the first time. It agrees well with the simulations, is consistent with observations of the Neolithic transition, and makes it possible to estimate the value of the interaction parameter between the incoming and the indigenous populations
Resumo:
We extend a previous model of the Neolithic transition in Europe [J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999)] by taking two effects into account: (i) we do not use the diffusion approximation (which corresponds to second-order Taylor expansions), and (ii) we take proper care of the fact that parents do not migrate away from their children (we refer to this as a time-order effect, in the sense that it implies that children grow up with their parents, before they become adults and can survive and migrate). We also derive a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to show that effect (ii) is the most important one, and that both of them should in general be taken into account to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree with the observed front speed, and the corrections relative to previous models are important (up to 70%)
Resumo:
We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.
Resumo:
The Department on Human Services (DHS) carefully considered how to transition Medicaid services to managed care while creating stability for both members and providers.
Resumo:
Pseudomonas aeruginosa has a pair of distinct ornithine carbamoyltransferases. The anabolic ornithine carbamoyltransferase encoded by the argF gene catalyzes the formation of citrulline from ornithine and carbamoylphosphate. The catabolic ornithine carbamoyltransferase encoded by the arcB gene promotes the reverse reaction in vivo; although this enzyme can be assayed in vitro for citrulline synthesis, its unidirectionality in vivo is determined by its high concentration at half maximum velocity for carbamoylphosphate ([S]0.5) and high cooperativity toward this substrate. We have isolated mutant forms of catabolic ornithine carbamoyltransferase catalyzing the anabolic reaction in vivo. The corresponding arcB mutant alleles on a multicopy plasmid specifically suppressed an argF mutation of P. aeruginosa. Two new mutant enzymes were obtained. When methionine 321 was replaced by isoleucine, the mutant enzyme showed loss of homotropic cooperativity at physiological carbamoylphosphate concentrations. Substitution of glutamate 105 by lysine resulted in a partial loss of the sigmoidal response to increasing carbamoylphosphate concentrations. However, both mutant enzymes were still sensitive to the allosteric activator AMP and to the inhibitor spermidine. These results indicate that at least two residues of catabolic ornithine carbamoyltransferase are critically involved in positive carbamoylphosphate cooperativity: glutamate 105 (previously known to be important) and methionine 321. Mutational changes in either amino acid will affect the geometry of helix H2, which contains several residues required for carbamoylphosphate binding.
Resumo:
With the aim of understanding the mechanisms that control the metamorphic transition from the CH4- to the H2O-(CO2)-dominated fluid zone in the Helvetic domain of the Central Alps of Switzerland, fluid inclusions in quartz, illite ``crystallinity'' index, vitrinite reflectance, and the stable isotope compositions of vein and whole rock minerals and fluids trapped in quartz were investigated along four cross-sections. Increasing temperature during prograde metamorphism led to the formation of dry gas by hydrocarbon cracking in the CH4-zone. Fluid immiscibility in the H2O-CH4-(CO2)-NaCl system resulted in cogenetic, CH4- and H2O-dominated fluid inclusions. In the CH4-zone, fluids were trapped at temperatures <= 270 +/- 5 degrees C. The end of the CH4-zone is markedby a sudden increase of CO2 content in the gas phase of fluid inclusions. At temperatures > 270 +/- 5 degrees C, in the H2O-zone, the total amount of volatiles within the fluid decreased below 1 mol% with no immiscibility. This resulted m total homogenization temperatures of H2O-(CO2-CH4)-NaCl inclusions below 180 degrees C. Hydrogen isotope compositions of methane in fluid inclusion have delta D values of less than -100 parts per thousand in the CH4-zone, typical for an origin through cracking of higher hydrocarbons, but where the methane has not equilibrated with the pore water. delta D values of fluid inclusion water are around -40 parts per thousand., in isotopic equilibrium with phyllosilicates of the whole rocks. Within the CH4 to H2O(CO2) transition zone, delta D(H2O) values in fluid inclusions decrease to -130 parts per thousand interpreted to reflect the contribution of deuterium depleted water from methane oxidation. In the H2O-zone, delta D(H2O) values increase again towards an average of -30 parts per thousand which is again consistent with isotopic equilibrium with host-rock phyllosilicates. delta C-13 values of methane in fluid inclusions from the CH4-zone are around -27 parts per thousand in isotopic equilibrium with calcite in veins and whole rocks. The delta C-13(CH4) values decrease to less than -35 parts per thousand at the transition to the H2O-zone and are no longer in equilibrium with the carbonates in the whole rocks. delta C-13 values of CO, are variable but too low to be in equilibrium with the wall rock fluids, compatible with a contribution of CO2 from closed system oxidation of methane. Differences in isotopic composition between host-rock and Alpine fissure carbonate are generally small, suggesting that the amount of CO2 produced by oxidation of methane was small compared to the C-budget in the rocks and local pore fluids were buffered by the wall rocks during precipitation of calcite within the fissures. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper was to investigate the possible connections between ammonite faunal turnover and the eustatic events recorded in Tethyan sequences during the middle Toarcian/early Bajocian time interval. For this we have analysed the biostratigraphic ranges, at the subzone level, of approximately 600 ammonite species belonging to 160 genera from several selected sections of the western Tethys (Mediterranean and Submediterranean provinces). The analysis of taxon ranges enabled us to plot curves for ammonite faunal turnovers, inter-subzonal distance, and diversity. Comparing the mentioned curves with Tethyan sequences [Hardenbol et al., 19981, we find that sea-level changes correlate well with origination and extinction events and faunal diversity. Most of the faunal turnovers correlate with stratigraphic events. Extinction events with their corresponding decrease in diversity correlate with regressive intervals and with major or minor sequence boundaries. Origination events and their corresponding increase in diversity were clearly connected with transgressions in Tethyan sequences. In several cases, the major sequence boundary and the subsequent transgressive phase correlate with major ammonite faunal turnover, whereas minor or medium sequence boundaries generally gave rise to minor or medium turnovers.
Resumo:
Coronary artery fistulae represent the most frequent congenital anomalies of the coronary arteries, but remain a relatively uncommon clinical problem. Moreover, multiple fistulae originating from both the left and the right coronary arteries and draining into the left ventricular chamber are a rare condition. Due to the low prevalence of these anomalies, the appropriate management of patients with symptomatic coronary artery fistulae is controversial. Transcatheter closure approaches have emerged as a less invasive strategy and are nowadays considered a valuable alternative to surgical correction with similar effectiveness, morbidity and mortality. The percutaneous management, however, is mainly limited by the individual anatomic features of the fistula and an appropriate patient's selection is considered as a key determining factor to achieve complete occlusion. Thus, success rates of transcatheter closure techniques reported in the literature are extremely variable and highly dependent upon the nature of the follow up, which, at present, is not standardized. The optimal management of symptomatic patients with multiple coronary artery fistulae still remains a challenging problem and has been traditionally considered as an indication for cardiac surgery. We report here the case of a patient with double bilateral congenital coronary artery fistulae arising from both the left and right coronary arteries and draining individually into the left ventricular chamber. This patient underwent successful transcatheter anterograde closure of both fistulae using a microcoil embolization technique.
Resumo:
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. It induces a specific membrane rearrangement, designated membranous web, that serves as a scaffold for the HCV replication complex. However, the mechanisms underlying membranous web formation are poorly understood. Based on fluorescence resonance energy transfer (FRET) and confirmatory coimmunoprecipitation analyses, we provide evidence for an oligomerization of NS4B in the membrane environment of intact cells. Several conserved determinants were found to be involved in NS4B oligomerization, through homotypic and heterotypic interactions. N-terminal amphipathic ?-helix AH2, comprising amino acids 42 to 66, was identified as a major determinant for NS4B oligomerization. Mutations that affected the oligomerization of NS4B disrupted membranous web formation and HCV RNA replication, implying that oligomerization of NS4B is required for the creation of a functional replication complex. These findings enhance our understanding of the functional architecture of the HCV replication complex and may provide new angles for therapeutic intervention. At the same time, they expand the list of positive-strand RNA virus replicase components acting as oligomers.
Resumo:
This article examines the job prospects of displaced industrial workers in Switzerland. Based on a survey of 1,203 workers who were dismissed after their manufacturing plants closed down, we analyse the determinants of re-employment, the sector of re-employment and the change in wages. Two years after displacement, a majority of workers were back in employment: 69% were re-employed, 17% un-employed and 11% retired. Amongst re-employed workers, two thirds found a job in manufacturing and one third in services. Contrary to a common belief, low-end services are not the collecting vessel of redundant industrial workers. Displaced workers aged 55 and older seem particularly vulnerable after a plant closes down: over 30% were long-term unemployed, and those older workers who found a new job suffered disproportionate wage losses. Advanced age-and not low education-appears as the primary handicap after mass redundancy.
A performance lower bound for quadratic timing recovery accounting for the symbol transition density
Resumo:
The symbol transition density in a digitally modulated signal affects the performance of practical synchronization schemes designed for timing recovery. This paper focuses on the derivation of simple performance limits for the estimation of the time delay of a noisy linearly modulated signal in the presence of various degrees of symbol correlation produced by the varioustransition densities in the symbol streams. The paper develops high- and low-signal-to-noise ratio (SNR) approximations of the so-called (Gaussian) unconditional Cramér–Rao bound (UCRB),as well as general expressions that are applicable in all ranges of SNR. The derived bounds are valid only for the class of quadratic, non-data-aided (NDA) timing recovery schemes. To illustrate the validity of the derived bounds, they are compared with the actual performance achieved by some well-known quadratic NDA timing recovery schemes. The impact of the symbol transitiondensity on the classical threshold effect present in NDA timing recovery schemes is also analyzed. Previous work on performancebounds for timing recovery from various authors is generalized and unified in this contribution.