921 resultados para Heat Stress
Resumo:
The localized corrosion of Al-(5.03%)Zn-(1.67%)Mg-(0.23%)Cu alloys and high purity Al has been studied using electrochemical techniques, optical microscopy, SEM and EDX. The samples were previously submitted to different heat treatments in which coherent and incoherent MgZn 2 precipitates with different distribution and aggregation degree were produced. The influence of NaCl and Na 2SO 4, dissolved oxygen, immersion time and convection were studied. In NaCl solutions, pitting potentials for the alloys were more negative than for aluminium, indicating an increase in their susceptibility to localized corrosion. Moreover, annealed and cold-rolled alloys presented more negative pitting and repassivation potentials than those submitted to age hardening with direct or interrupted quenching. In annealed and cold-rolled samples, pit nucleation and propagation takes place in the zones where MgZn 2 is accumulated. In the case of the age-hardened alloys, a double pitting behaviour is observed, the first one in the magnesium and zinc enriched regions and the second in the matrix. While the cold water quenched alloy is susceptible to stress corrosion craking, the alloy submitted to the interrupted quenching process is less susceptible to intergranular attack. The sulphate ion shifts the pitting potential of aluminium and the alloys by chloride towards more positive values because it impedes local accumulations of the latter. © 1992 Chapman & Hall.
Resumo:
STATEMENT OF PROBLEM: Because water sorption of autopolymerizing acrylic reline resins is accompanied by volumetric change, it is a physical property of importance. As residual monomer leaches into the oral fluids and causes tissue irritation, low solubility of these resins is desired. Another requirement is a satisfactory bond between the autopolymerizing acrylic resins and the denture base acrylic resin. PURPOSE: This study compared the water sorption, solubility, and the transverse bond strength of 2 autopolymerizing acrylic resins (Duraliner II and Kooliner) and 1 heat-polymerizing acrylic resin (Lucitone 550). MATERIAL AND METHODS: The water sorption and solubility test was performed as per International Standards Organization Specification No. 1567 for denture base polymers. Bond strengths between the autopolymerizing acrylic resins and the heat-polymerizing acrylic resin were determine with a 3-point loading test made on specimens immersed in distilled water at 37 degrees C for 50 hours and for 30 days. Visual inspection determined whether failures were adhesive or cohesive. RESULTS: Duraliner II acrylic resin showed significantly lower water sorption than Kooliner and Lucitone 550 acrylic resins. No difference was noted in the solubility of all materials. Kooliner acrylic resin demonstrated significantly lower transverse bond strength to denture base acrylic resin and failed adhesively. The failures seen with Duraliner II acrylic resin were primarily cohesive in nature. CONCLUSIONS: Autopolymerizing acrylic reline resins met water sorption and solubility requirements. However, Kooliner acrylic resin demonstrated significantly lower bond strength to denture base acrylic resin.
Resumo:
Fertility in female mammals may be affected by a variety of endocrine disrupters present in the environment. Herbicide atrazine is an example of endocrine disrupter employed in agriculture, which disrupts estrous cyclicity in rats. Aiming to characterize morphologically the effect of low and sublethal doses of atrazine on the ovaries of Wistar rats, in an effort to determine the possible intrafollicular target site through which this herbicide acts adult females were submitted to both subacute and subchronic treatments. Additionally, immunocytochemical labeling of 90 kDa heat shock protein (HSP90) was performed in order to evaluate the role played by this protein in the ovary, under stressed conditions induced by herbicide exposure. The results indicated that atrazine induced impaired folliculogenesis, increased follicular atresia and HSP90 depletion in female rats submitted to subacute treatment, while the subchronic treatment with low dose of atrazine could compromise the reproductive capacity reflected by the presence of multioocytic follicle and stress-inducible HSP90. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Prosthetic eyes are artificial substitutes for the eyeball, made of heat-curing acrylic resin, serving to improve the esthetic appearance of the mutilated patient and his/her inclusion in society. The aim of this study was to assess the flexural strength of two heat-curing acrylic resins used for manufacturing prosthetic eyes. Thirty-six specimens measuring 64 x 10 x 3.3 mm were obtained and divided into four groups: acrylic resin for artificial sclera N1 (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GI) and microwave-cured (GII); colorless acrylic resin for prosthetic eyes (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GIII) and microwave-cured (GIV). Mechanical tests using three point loads were performed in a test machine (EMIC, São José dos Pinhais, PR, Brazil). The analysis of variance and the Tukey test were used to identify significant differences (p < 0.01). Groups GII and GIV presented, respectively, the highest (98.70 ± 11.90 MPa) and lowest means (71.07 ± 8.93 MPa), with a statistically significant difference. The cure method used for the prosthetic eye resins did not interfere in their flexural strength. It was concluded that all the resins assessed presented sufficient flexural strength values to be recommended for the manufacture of prosthetic eyes.
Resumo:
We evaluated associations between the concentrations of heat shock proteins (hsp60 and hsp70) and their respective antibodies, alterations in maternal reproductive performance, and fetal malformations in pregnant rats with hyperglycemia. Mild diabetes (MD) or severe diabetes (SD) was induced in Sprague-Dawley rats prior to mating; non-treated non-diabetic rats (ND) served as controls. On day 21 of pregnancy, maternal blood was analyzed for hsp60 and hsp70 and their antibodies; and fetuses were weighed and analyzed for congenital malformations. Hsp and anti-hsp levels were correlated with blood glucose levels during gestation. There was a positive correlation between hsp60 and hsp70 levels and the total number of malformations (R∈=∈0.5908, P∈=∈0.0024; R∈=∈0.4877, P∈=∈0.0134, respectively) and the number of malformations per fetus (R∈=∈0.6103, P∈=∈0.0015; R∈=∈0.4875, P∈=∈0.0134, respectively). The anti-hsp60 IgG concentration was correlated with the number of malformations per fetus (R∈=∈0.3887, P∈=∈0.0451) and the anti-hsp70 IgG level correlated with the total number of malformations (R∈=∈0.3999, P∈=∈0.0387). Moreover, both hsp and anti-hsp antibodies showed negative correlations with fetal weight. The results suggest that there is a relationship between hsp60 and hsp70 levels and their respective antibodies and alterations in maternal reproductive performance and impaired fetal development and growth in pregnancies associated with diabetes. © 2012 Cell Stress Society International.
Resumo:
Obese Black women are at increased risk for development of gestational diabetes mellitus and have worse perinatal outcomes than do obese women of other ethnicities. Since hsp72 has been associated with the regulation of obesity-induced insulin resistance, we evaluated associations between glucose ingestion, hsp72 release and insulin production in Black pregnant women. Specifically, the effect of a 50-g glucose challenge test (GCT) on heat shock protein and insulin levels in the circulation 1 h later was evaluated. Hsp27 and hsp60 levels remained unchanged. In contrast, serum levels of hsp72 markedly increased after glucose ingestion (p = 0.0054). Further analysis revealed that this increase was limited to women who were not obese (body mass index <30). Insulin levels pre-GCT were positively correlated with body mass index (p = 0.0189). Median insulin concentrations also increased post GCT in non-obese women but remained almost unchanged in obese women. Post-GCT serum hsp72 concentrations were inversely correlated with post GCT insulin concentrations (p = 0.0111). These observations suggest that glucose intake during gestation in Black women rapidly leads to an elevation in circulating hsp72 only in non-obese Black women. The release of hsp72 may regulate the extent of insulin production in response to a glucose challenge and, thereby, protect the mother and/or fetus from development of hyperglycemia, hyperinsulinemia, and/or immune system alterations. © 2013 Cell Stress Society International.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Application of acoustoelasticity to measure the stress generated by milling in ASTM A36 steel plates
Resumo:
Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico (CNPq)
Resumo:
The aim of this study was to estimate milk production and food consumption during the occurrence of heat waves in the Triangulo Mineiro and Alto Paranaiba, MG by means of bioclimatic zoning based on the Temperature and Humidity Index (THI). Therefore a history of heat wave occurrence between the years 2000-2010 was compiled. The decline in milk production (DMP) and reduced food consumption (RFC) were simulated in cities where periods of heat waves were identified. Frutal and Ituiutaba had the highest rate of heat wave occurrence per year. The DMP and RFC showed bioclimatic differences between the cities of Uberaba, Ituiutaba and Frutal. The cities with the best bioclimatic conditions were Sacramento and Patrocinio, as they presented a THI classified outside of the emergency range, with a night THI of below 76 and without heat waves. Therefore, the occurrence of heat waves can impair food intake and decrease milk production, thereby most effectively demonstrating the effects of thermal stress on dairy cows in the Triangulo Mineiro and Alto Paranaiba, MG region.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
The effect of heat-moisture treatment on structural, physicochemical, and rheological characteristics of arrowroot starch was investigated. Heat-moisture treatment was performed with starch samples conditioned to 28% moisture at 100℃ for 2, 4, 8, and 16 h. Structural and physicochemical characterization of native and modified starches, as well as rheological assays with gels of native and 4 h modified starches subjected to acid and sterilization stresses were performed. Arrowroot starch had 23.1% of amylose and a CA-type crystalline pattern that changed over the treatment time to A-type. Modified starches had higher pasting temperature and lower peak viscosity while breakdown viscosity practically disappeared, independently of the treatment time. Gelatinization temperature and crystallinity increased, while enthalpy, swelling power, and solubility decreased with the treatment. Gels from modified starches, independently of the stress conditions, were found to have more stable apparent viscosities and higher G' and G″ than gels from native starch. Heat-moisture treatment caused a reorganization of starch chains that increased molecular interactions. This increase resulted in higher paste stability and strengthened gels that showed higher resistance to shearing and heat, even after acid or sterilization conditions. A treatment time of 4 h was enough to deeply changing the physicochemical properties of starch.
Experimental and numerical study of heat transfer in hot machined workpiece using infrared radiation
Resumo:
One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.
Resumo:
Heat shock proteins play a key regulatory role in cellular defense. To investigate the role of the inducible 70-kDa heat shock protein (HSP70) in skeletal muscle atrophy and subsequent recovery, soleus (SOL) and extensor digitorum longus (EDL) muscles from overexpressing HSP70 transgenic mice were immobilized for 7 days and subsequently released from immobilization and evaluated after 7 days. Histological analysis showed that there was a decrease in cross-sectional area of type II myofiber from EDL and types I and II myofiber from SOL muscles at 7-day immobilization in both wild-type and HSP70 mice. At 7-day recovery, EDL and SOL myofibers from HSP70 mice, but not from wild-type mice, recovered their size. Muscle tetanic contraction decreased only in SOL muscles from wild-type mice at both 7-day immobilization and 7-day recovery; however, it was unaltered in the respective groups from HSP70 mice. Although no effect in a fatigue protocol was observed among groups, we noticed a better contractile performance of EDL muscles from overexpressing HSP70 groups as compared to their matched wild-type groups. The number of NCAM positive-satellite cells reduced after immobilization and recovery in both EDL and SOL muscles from wild-type mice, but it was unchanged in the muscles from HSP70 mice. These results suggest that HSP70 improves structural and functional recovery of skeletal muscle after disuse atrophy, and this effect might be associated with preservation of satellite cell amount.
Resumo:
Large areas of Amazonian evergreen forest experience seasonal droughts extending for three or more months, yet show maximum rates of photosynthesis and evapotranspiration during dry intervals. This apparent resilience is belied by disproportionate mortality of the large trees in manipulations that reduce wet season rainfall, occurring after 2-3 years of treatment. The goal of this study is to characterize the mechanisms that produce these contrasting ecosystem responses. A mechanistic model is developed based on the ecohydrological framework of TIN (Triangulated Irregular Network)-based Real Time Integrated Basin Simulator + Vegetation Generator for Interactive Evolution (tRIBS+VEGGIE). The model is used to test the roles of deep roots and soil capillary flux to provide water to the forest during the dry season. Also examined is the importance of "root niche separation," in which roots of overstory trees extend to depth, where during the dry season they use water stored from wet season precipitation, while roots of understory trees are concentrated in shallow layers that access dry season precipitation directly. Observational data from the Tapajo's National Forest, Brazil, were used as meteorological forcing and provided comprehensive observational constraints on the model. Results strongly suggest that deep roots with root niche separation adaptations explain both the observed resilience during seasonal drought and the vulnerability of canopy-dominant trees to extended deficits of wet season rainfall. These mechanisms appear to provide an adaptive strategy that enhances productivity of the largest trees in the face of their disproportionate heat loads and water demand in the dry season. A sensitivity analysis exploring how wet season rainfall affects the stability of the rainforest system is presented. Citation: Ivanov, V. Y., L. R. Hutyra, S. C. Wofsy, J. W. Munger, S. R. Saleska, R. C. de Oliveira Jr., and P. B. de Camargo (2012), Root niche separation can explain avoidance of seasonal drought stress and vulnerability of overstory trees to extended drought in a mature Amazonian forest, Water Resour. Res., 48, W12507, doi:10.1029/2012WR011972.