998 resultados para HIGH TRANSVERSE-MOMENTUM
Resumo:
Although asthma has been commonly associated with sensitivity to cockroaches, a clear causal relationship between asthma, allergy to cockroaches and exposure levels has not been extensively investigated. The objective of the present study was to determine whether asthma occurs more frequently in children living in homes with high cockroach infestation. The intensity of household infestation was assessed by the number of dead insects after professional pesticide application. Children living in these houses in the metropolitan area of Recife, PE, were diagnosed as having asthma by means of a questionnaire based on the ISAAC study. All children had physician-diagnosed asthma and at least one acute exacerbation in the past year. Children of both sexes aged 4 to 12 years who had been living in the households for more than 2 years participated in this transverse study and had a good socioeconomic status. In the 172 houses studied, 79 children were considered to have been exposed to cockroaches and 93 not to have been exposed. Children living in residences with more than 5 dead cockroaches after pesticide application were considered to be at high infestation exposure. Asthma was diagnosed by the questionnaire in 31.6% (25/79) of the exposed group and in 11.8% (11/93) of the non-exposed group (P = 0.001), with a prevalence ratio of 3.45 (95%CI, 1.48-8.20). The present results indicate that exposure to cockroaches was significantly associated with asthma among the children studied and can be considered a risk factor for the disease. Blattella germanica and Periplaneta americana were the species found in 96% of the infested houses.
Resumo:
Tämän työn tavoitteena oli hitsata tandem MAG –laitteistolla 25 mm paksua Ruukin E500 TMCP terästä. Työssä oli tarkoituksena vähentää railotilavuutta mahdollisimman paljon sekä suorittaa testihitsaukset 0.8 kJ/mm sekä 2.5 kJ/mm lämmöntuonneilla. Teoriaosuudessa käsiteltiin Tandem MAG-hitsaukseen, sen tuottavuuteen ja laatukysymyksiin liittyviä asioita sekä siinä perehdyttiin suurlujuusteräksien käyttöön hitsauksessa sekä laivanrakennuksessa. Kokeellisessa osuudessa perehdyttiin hitsauksessa huomattuihin etuihin, ongelmiin sekä ongelmien ratkaisumahdollisuuksiin. Hitsausliitoksen mekaaniset ominaisuudet tutkittiin rikkomattomin sekä rikkovin menetelmin. Alustavat hitsausohjeet luotiin kummallekin lämmöntuonnille. Testaukset aloitettiin 30 º railokulmalla pienentäen kulmaa mahdollisuuksien mukaan. Testauksissa ei saatu hitsattua onnistuneesti alle 30 º railokulmalla. Hitsaustestien aikana huomattiin magneettisen puhalluksen vaikutus hitsaustapahtumaan. Kaasunvirtausnopeuden tuli olla tietyn suuruinen jotta palkokerrokset onnistuivat ilman huokoisuusongelmaa. Pienemmällä lämmöntuonnilla hitsattaessa kaasunvirtausnopeudet olivat tärkeämpiä hitsatessa ylempiä palkokerroksia. Kääntämällä hitsauspoltinta sivuttaissuunnassa 7-10 astetta auttoi ehkäisemään reunahaavan syntymistä. Rikkovista menetelmistä testitulokset olivat hyväksyttyjä kaikkien muiden paitsi päittäishitsin sivutaivutuskokeen osalta.
Resumo:
In this study, finite element analyses and experimental tests are carried out in order to investigate the effect of loading type and symmetry on the fatigue strength of three different non-load carrying welded joints. The current codes and recommendations do not give explicit instructions how to consider degree of bending in loading and the effect of symmetry in the fatigue assessment of welded joints. The fatigue assessment is done by using effective notch stress method and linear elastic fracture mechanics. Transverse attachment and cover plate joints are analyzed by using 2D plane strain element models in FEMAP/NxNastran and Franc2D software and longitudinal gusset case is analyzed by using solid element models in Abaqus and Abaqus/XFEM software. By means of the evaluated effective notch stress range and stress intensity factor range, the nominal fatigue strength is assessed. Experimental tests consist of the fatigue tests of transverse attachment joints with total amount of 12 specimens. In the tests, the effect of both loading type and symmetry on the fatigue strength is studied. Finite element analyses showed that the fatigue strength of asymmetric joint is higher in tensile loading and the fatigue strength of symmetric joint is higher in bending loading in terms of nominal and hot spot stress methods. Linear elastic fracture mechanics indicated that bending reduces stress intensity factors when the crack size is relatively large since the normal stress decreases at the crack tip due to the stress gradient. Under tensile loading, experimental tests corresponded with finite element analyzes. Still, the fatigue tested joints subjected to bending showed the bending increased the fatigue strength of non-load carrying welded joints and the fatigue test results did not fully agree with the fatigue assessment. According to the results, it can be concluded that in tensile loading, the symmetry of joint distinctly affects on the fatigue strength. The fatigue life assessment of bending loaded joints is challenging since it depends on whether the crack initiation or propagation is predominant.
Resumo:
We have carried out a systematic analysis of the transverse dipole spin response of a large-size quantum dot within time-dependent current density functional theory. Results for magnetic fields corresponding to integer filling factors are reported, as well as a comparison with the longitudinal dipole spin response. As in the two-dimensional electron gas, the spin response at high-spin magnetization is dominated by a low-energy transverse mode.
Resumo:
An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.
Resumo:
Nanoporous GaN films are prepared by UV assisted electrochemical etching using HF solution as an electrolyte. To assess the optical quality and morphology of these nanoporous films, micro-photoluminescence (PL), micro-Raman scattering, scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques have been employed. SEM and AFM measurements revealed an average pore size of about 85-90 nm with a transverse dimension of 70-75 nm. As compared to the as-grown GaN film, the porous layer exhibits a substantial photoluminescence intensity enhancement with a partial relaxation of compressive stress. Such a stress relaxation is further confirmed by the red shifted E₂(TO) phonon peak in the Raman spectrum of porous GaN.
Resumo:
The article shows the classroom like an workplace to move moral development, from the relationship between students and professors in the university atmosphere. It proposes elements to take to the practice the ethics education a transverse curriculum line. It assumes the ethics, from a plural perspective, founded on the knowledge and the human action. It joins the integral formation with the conceptions of education, curriculum, pedagogical models and methodologies of education. It proposes actions to demonstrate the commitment of the professor with the integral formation. Finally, concludes that the professor is agent of moral development and that in the classroom is constructed: identity, autonomy and responsibility, from open and plural relation between professors and students and between these and the knowledge.
Resumo:
Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The nature of the annular variability and eddy forcing depends on the time scale. At low frequencies the zonal flow and baroclinic eddies are in quasi equilibrium and anomalies propagate poleward. The eddies are shown primarily to reinforce the anomalous state and are closely balanced by the linear damping, leaving slow evolution as a residual. At high frequencies the flow is strongly evolving and anomalies are initiated on the poleward side of the tropospheric jet and propagate equatorward. The eddies are shown to drive this evolution strongly: eddy location and amplitude reflect the past baroclinicity, while eddy feedback on the zonal flow may be interpreted in terms of wave breaking associated with baroclinic life cycles in lateral shear.
Resumo:
Observations from the High Resolution Dynamics Limb Sounder (HIRDLS) instrument on NASA's Aura satellite are used to quantify gravity wave momentum fluxes in the middle atmosphere. The period around the 2006 Arctic sudden stratospheric warming (SSW) is investigated, during which a substantial elevation of the stratopause occurred. Analysis of the HIRDLS results, together with analysis of European Centre for Medium-Range Weather Forecasting zonal winds, provide direct evidence of wind filtering of the gravity wave spectrum during this period. This confirms previous hypotheses from model studies and further contributes to our understanding of the effects of gravity wave driving on the winter polar stratopause.
Resumo:
The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave momentum at critical levels, or levels where the waves break. The first process is treated analytically in this study within the framework of linear theory. The variation of the momentum flux with height is investigated for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady, nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind profiles. This approximation must be extended to third order to obtain momentum flux expressions that are accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On the other hand, the momentum flux divergence (which corresponds to the force on the atmosphere that must be represented in gravity wave drag parameterizations) is given in closed analytical form. The momentum flux expressions are tested for idealized wind profiles, where they become a function of the Richardson number (Ri). These expressions tend, for high Ri, to results by previous authors, where wind profile effects on the surface drag were neglected and critical levels acted as perfect absorbers. The linear results are compared with linear and nonlinear numerical simulations, showing a considerable improvement upon corresponding results derived for higher Ri.
Resumo:
The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed. The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes. The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.
Resumo:
The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.
Resumo:
An underestimate of atmospheric blocking occurrence is a well-known limitation of many climate models. This article presents an analysis of Northern Hemisphere winter blocking in an atmospheric model with increased horizontal resolution. European blocking frequency increases with model resolution, and this results from an improvement in the atmospheric patterns of variability as well as a simple improvement in the mean state. There is some evidence that the transient eddy momentum forcing of European blocks is increased at high resolution, which could account for this. However, it is also shown that the increase in resolution of the orography is needed to realise the improvement in blocking, consistent with the increase in height of the Rocky Mountains acting to increase the tilt of the Atlantic jet stream and giving higher mean geopotential heights over northern Europe. Blocking frequencies in the Pacific sector are also increased with atmospheric resolution, but in this case the improvement in orography actually leads to a decrease in blocking
Resumo:
This paper analyses the impact of trading costs on the profitability of momentum strategies in the United Kingdom and concludes that losers are more expensive to trade than winners. The observed asymmetry in the costs of trading winners and losers crucially relates to the high cost of selling loser stocks with small size and low trading volume. Since transaction costs severely impact net momentum profits, the paper defines a new low-cost relative-strength strategy by shortlisting from all winner and loser stocks those with the lowest total transaction costs. While the study severely questions the profitability of standard momentum strategies, it concludes that there is still room for momentum-based return enhancement, should asset managers decide to adopt low-cost relative-strength strategies.
Resumo:
This study examines the rationality and momentum in forecasts for rental, capital value and total returns for the real estate investment market in the United Kingdom. In order to investigate if forecasters are affected by the general economic conditions present at the time of forecast we incorporate into the analysis Gross Domestic Product(GDP) and the Default Spread (DS). The empirical findings show high levels of momentum in the forecasts, with highly persistent forecast errors. The results also indicate that forecasters are affected by adverse conditions. This is consistent with the finding that they tend to exhibit greater forecast error when the property market is underperforming and vice-versa.