976 resultados para Growth. Reduction
Resumo:
Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.
Resumo:
Composition and orientation effects on the final recrystallization texture of three coarse-grained Nb-containing AISI 430 ferritic stainless steels (FSSs) were investigated. Hot-bands of steels containing distinct amounts of niobium, carbon and nitrogen were annealed at 1250 degrees C for 2h to promote grain growth. In particular, the amounts of Nb in solid solution vary from one grade to another. For purposes of comparison, the texture evolution of a hot-band sheet annealed at 1030 degrees C for 1 min (finer grain structure) was also investigated. Subsequently, the four sheets were cold rolled up to 80% reduction and then annealed at 800 degrees C for 15 min. Texture was determined using X-ray diffraction and electron backscatter diffraction (EBSD). Noticeable differences regarding the final recrystallization texture and microstructure were observed in the four investigated grades. Results suggest that distinct nucleation mechanisms take place within these large grains leading to the development of different final recrystallization textures. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fenton reaction is thought to play an important role in wood degradation by brown-rot fungi. In this context, the effect of oxalic acid and pH on iron reduction by a biomimetic fungal chelator and on the adsorption/desorption of iron to/from wood was investigated. The results presented in this work indicate that at pH 2.0 and 4.5 and in the presence of oxalic acid, the phenolate chelator 2,3-dihydroxybenzoic acid (2,3-DHBA) is capable of reducing ferric iron only when the iron is complexed with oxalate to form Fe mono-oxalate (Fe(C(2)O(4))(+)). Within the pH range tested in this work, this complex formation occurs when the oxalate:Fe(3+) molar ratio is less than 20 (pH 2.0) or less than 10 (pH 4.5). When aqueous ferric iron was passed through a column packed with milled red spruce (Picea rubens) wood equilibrated at pH 2.0 and 4.5. it was observed that ferric iron binds to wood at pH 4.5 but not at pH 2.0, and the bound iron could then be released by application of oxalic acid at pH 4.5. The release of bound iron was dependent on the amount of oxalic acid applied in the column. When the amount of oxalate was at least 20-fold greater than the amount of iron bound to the wood, all bound iron was released. When Fe-oxalate complexes were applied to the milled wood column equilibrated in the pH range of 2-4.5, iron from Fe-oxalate complexes was bound to the wood only when the pH was 3.6 or higher and the oxalate:Fe(3+) molar ratio was less than 10. When 2,3-DHBA was evaluated for its ability to release iron bound to the milled wood, it was found that 2,3-DHBA possessed a greater affinity for ferric iron than the wood as 2,3-DHBA was capable of releasing the ferric iron bound to the wood in the pH range 3.6-5.5. These results further the understanding of the mechanisms employed by brown-rot fungi in wood biodegradation processes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]
Resumo:
Limited information is available on the interactions between environmental factors and algal growth in tropical and subtropical aquatic systems. We investigated the relationships between algal biomass (measured as chlorophyll, Chl-a) and light, total phosphorus (TP) and total nitrogen (TN) in longitudinal zones of subtropical reservoirs. We studied the seasonal variation of water variables in Itupararanga Reservoir (Brazil) and compared the results with 16 other subtropical lakes and reservoirs. The longitudinal zones in Itupararanga Reservoir were considered statistically different (p 0.05, MANOVA). From the riverine zone to the dam region of the reservoir, Spearman Correlation Test suggested that light limitation and TP limitation tended to decrease and increase, respectively. Although nitrate concentrations were high (400 g/L), the Spearman coefficients between Chl-a and TN and the TN:TP ratios (11:1 TN:TP 35:1) indicated that nitrogen may be co-limiting algal growth in the studied water body. Putting Itupararanga in a regional context allowed assessment of potential influences of land use on trophic state. Within the subtropical dataset, TP explained a greater percentage of variance in Chl-a (R2 = 0.70) than TN (R2 = 0.17). The main land use type within the reservoirs drainage area significantly influenced the concentrations of TP, TN, and Chl-a (p 0.05, MANOVA), with different relationships between nutrients and chlorophyll in forested (R2 = 0.12-0.33), agricultural (R2 = 0.50-0.68) and urban (R2 = 0.09-0.64) watersheds. Comparisons with literature values and those from reservoirs with less altered watersheds indicated that Itupararanga Reservoir is reaching the mesotrophic-eutrophic boundary, and further nutrient enrichment could cause water quality degradation.
Resumo:
The main objective of this research was to evaluate the potential use of a bench-scale anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal as inert support for removal Of Sulfide and organic matter effluents from an ASBBR (1.2 m(3)) utilized for treatment of sulfate-rich wastewater. The cycle time was 48 h, including the steps of feeding (2 h), reaction with continuous liquid recirculation (44 h) and discharge (2 h). COD removal efficiency was up to 90% and the effluents total sulfide concentrations (H(2)S, HS(-), S(2-)) remained in the range of 1.5 to 7.5 mg.l(-1) during the 50 days of operation (25 cycles). The un-ionized Sulfide and ionized sulfides were converted by biological process to elemental sulfur (S(0)) under oxygen limited conditions. The results obtained in the bench-scale reactor were used to design an ASBBR in pilot scale for use in post-treatment to achieve the emission standards (sulfide and COD) for sulfate reduction. The pilot-scale reactor, with a total volume of 0.43 m(3), the COD and total sulfide removal achieved 88% and 57%, respectively, for a cycle time of 48 h (70 days of operation or 35 cycles).
Resumo:
The internal stresses and crystallographic texture in alpha-Al(2)O(3) scales grown on iron aluminides at 1100 degrees C were determined in situ using synchrotron X-ray diffraction. In the first hour of oxidation, alpha-Al(2)O(3) was formed by direct nucleation and by conversion from transition oxides (either theta-Al(2)O(3) or a mixed Fe-Al oxide). A sharp texture develops connected with the direct nucleation of alpha-Al(2)O(3), in contrast to the weaker texture observed in alpha-Al(2)O(3) originated by previous transformations, which also yielded tensile stresses in early oxidation stages. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The fatigue crack growth properties of friction stir welded joints of 2024-T3 aluminium alloy have been studied under constant load amplitude (increasing-Delta K), with special emphasis on the residual stress (inverse weight function) effects on longitudinal and transverse crack growth rate predictions (Glinka`s method). In general, welded joints were more resistant to longitudinally growing fatigue cracks than the parent material at threshold Delta K values, when beneficial thermal residual stresses decelerated crack growth rate, while the opposite behaviour was observed next to K-C instability, basically due to monotonic fracture modes intercepting fatigue crack growth in weld microstructures. As a result, fatigue crack growth rate (FCGR) predictions were conservative at lower propagation rates and non-conservative for faster cracks. Regarding transverse cracks, intense compressive residual stresses rendered welded plates more fatigue resistant than neat parent plate. However, once the crack tip entered the more brittle weld region substantial acceleration of FCGR occurred due to operative monotonic tensile modes of fracture, leading to non-conservative crack growth rate predictions next to K-C instability. At threshold Delta K values non-conservative predictions values resulted from residual stress relaxation. Improvements on predicted FCGR values were strongly dependent on how the progressive plastic relaxation of the residual stress field was considered.
Resumo:
Three formulations of fiber cement were evaluated for fungal colonization and color change after five years of exposure in aging stations located in urban (Sao Paulo), rural (Pirassununga) and coastal (Rio Grande) zones in Brazil. The lowest color change and fungal colonization were registered in Rio Grande, which has a temperate climate, as opposed to Sao Paulo and Pirassununga, which are tropical. The highest fungal colonization was recorded in Sao Paulo, one of the most air polluted cities in Brazil. Pirassununga samples had an intermediate fungal colonization, in spite of showing the highest color change with visible dark spots on the surfaces. These spots were identified as cyanobacteria, which significantly contributed to the darkening of the specimens. The fiber cement formulation, varying in proportion of organic fibers such as poly (vinyl alcohol) and cellulose, was less significant for fungal bioreceptivity than the characteristics of the exposure site. The most frequent fungal genus found in the tropical climate, in both urban and rural zones, and the main one responsible for the higher records in Sao Paulo, was Scytalidiurn sp. which was registered for the first time on this building material in Brazil. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A methodology for the computational modeling of the fatigue crack growth in pressurized shell structures, based on the finite element method and concepts of Linear Elastic Fracture Mechanics, is presented. This methodology is based on that developed by Potyondy [Potyondy D, Wawrzynek PA, Ingraffea, AR. Discrete crack growth analysis methodology for through crack in pressurized fuselage structures. Int J Numer Methods Eng 1995;38:1633-1644], which consists of using four stress intensity factors, computed from the modified crack integral method, to predict the fatigue propagation life as well as the crack trajectory, which is computed as part of the numerical simulation. Some issues not presented in the study of Potyondy are investigated herein such as the influence of the crack increment size and the number of nodes per element (4 or 9 nodes) on the simulation results by means of a fatigue crack propagation simulation of a Boeing 737 airplane fuselage. The results of this simulation are compared with experimental results and those obtained by Potyondy [1]. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO(2) nanoparticles plays an important role in the system`s energetics and stability. Using Xray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO(2) with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO(2) nanoparticles stability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The goal of this work is to investigate the reduction of chromium from a quaternary slag by carbon dissolved in liquid steel. Laboratory scale experiments were conducted to study the reduction of chromium oxides in the slag by carbon dissolved in the melt. These experiments were made under different conditions of slag basicity and amount of added carbon. Thermodynamic calculations based on Double Sublattice model were applied using the commercial software Thermo-Calc, with the IRSID database. The results obtained showed good correlation with practical and calculated results, making it possible to predict equilibrium conditions of the system and to determine the activities of chromium oxides in the slag.
Resumo:
The aim of this work is to study the reaction rate and the morphology of the intermediary reaction products during reduction of iron ore, when iron ore and carbonaceous material are agglomerated together as a carbon composite iron ore pellet. The reaction was performed at high temperatures, and in order to avoid heat transfer constraints small size samples were used. The carbonaceous materials employed were coke breeze and pure graphite. Portland cement was employed as a binder, and the pellets diameter was 5.2 mm. The experimental technique involved the measurement of the pellets weight loss, as well as interruption of the reaction at different stages in order to submit the partially reduced pellet to scanning electron microscopy. It has been observed that above 1523 K there is the formation of liquid slag inside the pellets, which partially dissolves iron oxides. The apparent activation energies obtained were 255 kJ/mol for coke breeze containing pellets, and 230 kJ/mol for those pellets containing graphite. It was possible to avoid heat transfer control of the reaction rate up to 1523 K by employing small composite pellets.
Resumo:
The aim of this work is to study MnO reduction by solid carbon. The influence of size of carbon particles, slag basicity, and bath temperature on MnO reduction was investigated. Fine Manganese ore particles were used as a source of MnO. Three sizes of carbon particles were used; 0.230 mm, 0.162 mm and 0.057 mm, binary basicity of 1 and 1.5 and temperatures of 1550, 1550 and 1600 degrees C. Curves were drawn for Mn content in the bath as a function of time and temperature for the several studied parameters. The MnO reduction rates were determined using these data. [doi:10.2320/matertrans.M2011007]