950 resultados para Groundwater hydraulics
Resumo:
Summary : Mining activities produce enormous amounts of waste material known as tailings which are composed of fine to medium size particles. These tailings often contain sulfides, which oxidation can lead to acid and metal contamination of water; therefore they need to be remediated. In this work a tailings bioremediation approach was investigated by an interdisciplinary study including geochemistry, mineralogy and microbiology. The aim of the work was to study the effect of the implementation of wetland above oxidizing tailings on the hydrogeology and the biogeochemical element cycles, and to assess the system evolution over time. To reach these goals, biogeochemical processes occurring in a marine shore tailings deposit were investigated. The studied tailings deposit is located at the Bahìa de Ite, Pacific Ocean, southern Peru, where between 1940 and 1996 the tailings were discharged from the two porphyry copper mines Cuajone and Toquepala. After the end of deposition, a remediation approach was initiated in 1997 with a wetland implementation above the oxidizing tailings. Around 90% of the tailings deposits (total 16 km2) were thus remediated, except the central delta area and some areas close to the shoreline. The multi-stable isotope study showed that the tailings were saturated with fresh water in spite of the marine setting, due to the high hydraulic gradient resulting from the wetland implementation. Submarine groundwater discharge (SGD) was the major source of SO4 2-, C1-, Na+, Fe2+, and Mn2+ input into the tailings at the original shelf-seawater interface. The geochemical study (aquatic geochemistry and X-Ray diffraction (XRD) and sequential extractions from the solid fraction) showed that iron and sulfur oxidation were the main processes in the non-remediated tailings, which showed a top a low-pH oxidation zone with strong accumulation of efflorescent salts at the surface due to capillary upward transport of heavy metals (Fe, Cu, Zn, Mn, Cd, Co, and Ni) in the arid climate. The study showed also that the implementation of the wetland resulted in very low concentrations of heavy metals in solution (mainly under the detection limit) due to the near neutral pH and more reducing conditions (100-150 mV). The heavy metals, which were taken from solution, precipitated as hydroxides and sulfides or were bound to organic matter. The bacterial community composition analysis by Terminal Restriction Fragment Length Polymorphism (T-RFLP) and cloning and sequencing of 16S rRNA genes combined with a detailed statistical analysis revealed a high correlation between the bacterial distribution and the geochemical variables. Acidophilic autotrophic oxidizing bacteria were dominating the oxidizing tailings, whereas neutrophilic and heterotrophic reducing bacteria were driving the biogeochemical processes in the remediated tailings below the wetland. At the subsurface of the remediated tailings, an iron cycling was highlighted with oxidation and reduction processes due to micro-aerophilic niches provided by the plant rhizosphere in this overall reducing environment. The in situ bioremediation experiment showed that the main parameter to take into account for the effectiveness was the water table and chemistry which controls the system. The constructed remediation cells were more efficient and rapid in metal removal when saturation conditions were available. This study showed that the bioremediation by wetland implementation could be an effective and rapid treatment for some sulfidic mine tailings deposits. However, the water saturation of the tailings has to be managed on a long-term basis in order to guarantee stability. Résumé : L'activité minière produit d'énormes quantités de déchets géologiques connus sous le nom de « tailings » composées de particules de taille fine à moyenne. Ces déchets contiennent souvent des sulfures dont l'oxydation conduit à la formation d'effluents acides contaminés en métaux, d'où la nécessité d'effectuer une remédiation des sites de stockage concernés. Le but de ce travail est dans un premier temps d'étudier l'effet de la bio-remédiation d'un dépôt de tailings oxydés sur l'hydrogéologie du système et les cycles biogéochimiques des éléments et en second lieu, d'évaluer l'évolution du processus de remédiation dans le temps. Le site étudié dans ce travail est situé dans la Bahía de Ite, au sud du Pérou, au bord de l'Océan Pacifique. Les déchets miniers en question sont déposés dans un environnement marin. De 1940 à 1996, les déchets de deux mines de porphyre cuprifère - Cuajone et Toquepala - ont été acheminés sur le site via la rivière Locumba. En 1997, une première remédiation a été initiée avec la construction d'une zone humide sur les tailings. Depuis, environ 90% de la surface du dépôt (16 km2) a été traité, les parties restantes étant la zone centrale du delta du Locumba et certaines zones proches de la plage. Malgré la proximité de l'océan, les études isotopiques menées dans le cadre de ce travail ont montré que les tailings étaient saturés en eau douce. Cette saturation est due à la pression hydraulique résultant de la mise en place des zones humides. Un écoulement d'eau souterrain sous-marin a été à détecté à l'interface entre les résidus et l'ancien fond marin. En raison de la géologie locale, il constitue une source d'entrée de SO4 2-, Cl-, Na+, FeZ+, et Mn2+ dans le système. L'analyse de la géochimie aquatique, la Diffraction aux Rayons X (XRD) et l'extraction séquentielle ont montré que l'oxydation du fer et .des sulfures est le principal processus se produisant dans les déchets non remédiés. Ceci a entraîné le développement d'une zone d'oxydation à pH bas induisant une forte accumulation des sels efflorescents, conséquence de la migration capillaire des métaux lourds (Fe, Cu, Zn, Mn, Cd, Co et Ni) de la solution vers la surface dans ce climat aride. Cette étude a montré également que la construction de la zone humide a eu comme résultats une précipitation des métaux dans des phases minérales en raison du pH neutre et des conditions réductrices (100-150mV). Les métaux lourds ont précipité sous la forme d'hydroxydes et de sulfures ou sont adsorbés à la matière organique. L'analyse de la composition de la communauté bactérienne à l'aide la technique T-RFLP (Terminal Restriction Fragment Length Polymorphism) et par le clonage/séquençage des gènes de l'ARNr 16S a été combinée à une statistique détaillée. Cette dernière a révélé une forte corrélation entre la distribution de bactéries spécifiques et la géochimie : Les bactéries autotrophes acidophiles dominent dans les déchets oxydés non remédiés, tandis que des bactéries hétérotrophes neutrophiles ont mené les processus microbiens dans les déchets remédiés sous la zone humide. Sous la surface de la zone humide, nos analyses ont également mis en évidence un cycle du fer par des processus d'oxydoréduction rendus possibles par la présence de niches micro-aérées par la rhizosphère dans cet environnement réducteur. L'expérience de bio-remédiation in situ a montré que les paramètres clés qui contrôlent l'efficacité du traitement sont le niveau de la nappe aquifère et la chimie de l'eau. Les cellules de remédiation se sont montrées plus efficaces et plus rapides lorsque le système a pu être saturé en eau. Finalement, cette étude a montré que la bio-remédiation de déchets miniers par la construction de zones humides est un moyen de traitement efficace, rapide et peu coûteux. Cependant, la saturation en eau du système doit être gérée sur le long terme afin de garantir la stabilité de l'ensemble du système.
Resumo:
Geoelectrical techniques are widely used to monitor groundwater processes, while surprisingly few studies have considered audio (AMT) and radio (RMT) magnetotellurics for such purposes. In this numerical investigation, we analyze to what extent inversion results based on AMT and RMT monitoring data can be improved by (1) time-lapse difference inversion; (2) incorporation of statistical information about the expected model update (i.e., the model regularization is based on a geostatistical model); (3) using alternative model norms to quantify temporal changes (i.e., approximations of l(1) and Cauchy norms using iteratively reweighted least-squares), (4) constraining model updates to predefined ranges (i.e., using Lagrange Multipliers to only allow either increases or decreases of electrical resistivity with respect to background conditions). To do so, we consider a simple illustrative model and a more realistic test case related to seawater intrusion. The results are encouraging and show significant improvements when using time-lapse difference inversion with non l(2) model norms. Artifacts that may arise when imposing compactness of regions with temporal changes can be suppressed through inequality constraints to yield models without oscillations outside the true region of temporal changes. Based on these results, we recommend approximate l(1)-norm solutions as they can resolve both sharp and smooth interfaces within the same model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Iowa Department of Natural Resources fact sheet on water.
Resumo:
Cabo Verde é constituído por 10 ilhas, sendo a ilha do Maio a mais antiga do arquipélago, com uma área de 269 km2, tendo como comprimento máximo 24100 m, uma largura máxima de 16300 m e uma população total de 6740 habitantes. No que concerne à geomorfologia e geologia, a ilha é considerada plana e é composta por formações eruptivas e sedimentares, sendo as formações sedimentares dominantes na ilha. Apresenta as formações mais antigas de Cabo Verde, de idade jurássica e cretácica. No entanto, não apresenta as formações eruptivas mais recentes como as restantes ilhas. A ilha do Maio enquadra-se num clima do tipo árido e semiárido, com uma temperatura média de 24.5 ºC e uma precipitação anual de 125.4 mm. Estimativas efectuadas com base no modelo do balanço hídrico sequencial diário mostram que cerca de 7% da precipitação corresponde a escoamento superficial e 14.1% a escoamento subterrâneo. Pela aplicação deste modelo e do método do balanço químico do ião cloreto, os recursos hídricos subterrâneos renováveis anualmente na ilha do Maio estão, em ano médio, compreendidos entre 3.44 x 106 m3 e 4.76 x 106 m3.por sua vez, o escoamento total é estimado em 7.8 x 106 m3 anuais, o que equivale a cerca de 21 400 m3/dia. O escoamento subterrâneo na ilha do Maio faz-se globalmente de um modo centrífugo a partir das elevações do maciço central. O gradiente hidráulico assume valores entre 0.05% e 2.9%, sendo que o valor mais baixo ocorre no sector norte da ilha, o que favorece o fenómeno de intrusão salina. Relativamente à qualidade da água, verifica-se que as amostras recolhidas correspondem a águas muito mineralizadas, com valores de condutividade eléctrica compreendidos entre 832 μS/cm e 7730 μS/cm. Por sua vez, os valores de TDS estão compreendidos entre 705.8 mg/L e 4210.4 mg/L. Nestas condições, as águas subterrâneas analisadas podem ser consideradas águas salobras. A fácies hidroquímica dominante é a cloretada sódica, sendo que grande parte das amostras pode ser considerada cloretada-bicarbonatada sódica. Admitindo que a amostragem efectuada tem significado estatístico, poderá dizer-se que, a nível físico-químico, cerca de 20% das águas subterrâneas são próprias para o consumo humano. No que respeita à utilização da água para rega, as águas analisadas apresentam baixo a alto perigo de alcalinização do solo e alto a muito alto perigo de salinização. Em síntese, pode concluir-se que, não obstante o carácter árido da ilha do Maio, a mesma apresenta um potencial de recursos hídricos não negligenciável, eventualmente suficiente para suprir as necessidades hídricas da população. No entanto, o estudo desenvolvido mostra a necessidade de implementar medidas susceptíveis de proporcionarem um aproveitamento sustentado dos recursos hídricos, no quadro da gestão integrada dos recursos hídricos da ilha do Maio.
Resumo:
This work aims the applicability of the Transient electromagnetic method at an arid and semiarid environmental condition in the Santiago Island – Cape Verde. Some seashore areas of this island show an increasing salt contamination of the groundwater. The main objective of present work is to relate this water-quality condition with parameters taken from the transient sounding’s data. In this context, transient soundings have been acquired from 2005 through 2009, at several chosen valleys near the sea, in a mean rate of one field campaign each year. The first phase of this work was the understanding of the geophysical method details, problems and applicability, as the chosen and acquired equipment was the first one to be permanently available to the Portuguese geosciences community. This first phase was also accomplished with field tests. Interpretation of the transient sounding’s data curves were done by application of 1-D inversion methods already developed and published, as also with quasi 2-D and quasi 3-D inversion algorithms, where applicability was feasible. This was the second phase. The 2-D and 3-D approximation results are satisfactory and promising; although a higher spatial sounding’s density should certainly allow for better results. At phase three, these results have been compared against the available lithologic, hydrologic and hydrochemical data, in the context of Santiago’s island settings. The analyses of these merged data showed that two distinct origins for the observed inland groundwater salinity are possible; seashore shallow mixing with contemporary seawater and mixing with a deep and older salty layer from up flow groundwater. Relations between the electric resistivity and the salt water content distribution were found for the surveyed areas. To this environment condition, the electromagnetic transient method proved to be a reliable and powerful technique. The groundwater quality can be accessed beyond the few available watershed points, which have an uneven distribution.
Resumo:
The aim of our survey was to assess the effect of irrigation water of the microbiological quality on the production chain of lettuce in the Dakar area. Microbiological analysis showed that 35% of irrigation water was contaminated by Salmonella spp. between the two water-types used for irrigation (groundwater and wastewater), no significant difference (p>0.05) in their degree of contamination was found. The incidence of different types of irrigation water on the contamination rate of lettuces from the farm (Pikine and Patte d'Oie) was not different either (p>0.05). However, the contamination rate of lettuce from markets of Dalifort and Grand-Yoff that were supplied by the area of Patte d'Oie was greater than those of Sham and Zinc supplied by Pikine (p<0.05). Comparison of serotypes of Salmonella isolated from irrigation water and lettuce showed that irrigation water may affect the microbiological quality of lettuce. Manures, frequently used as organic amendment in cultivating lettuce are another potential source of contamination. These results showed that lettuce may constitute effective vectors for the transmission of pathogens to consumers. Extensive treatment of the used wastewater and/or composting of manure could considerably reduce these risks.
Resumo:
Abstract Accurate characterization of the spatial distribution of hydrological properties in heterogeneous aquifers at a range of scales is a key prerequisite for reliable modeling of subsurface contaminant transport, and is essential for designing effective and cost-efficient groundwater management and remediation strategies. To this end, high-resolution geophysical methods have shown significant potential to bridge a critical gap in subsurface resolution and coverage between traditional hydrological measurement techniques such as borehole log/core analyses and tracer or pumping tests. An important and still largely unresolved issue, however, is how to best quantitatively integrate geophysical data into a characterization study in order to estimate the spatial distribution of one or more pertinent hydrological parameters, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first develop a strategy for the assimilation of several types of hydrogeophysical data having varying degrees of resolution, subsurface coverage, and sensitivity to the hydrologic parameter of interest. In this regard a novel simulated annealing (SA)-based conditional simulation approach was developed and then tested in its ability to generate realizations of porosity given crosshole ground-penetrating radar (GPR) and neutron porosity log data. This was done successfully for both synthetic and field data sets. A subsequent issue that needed to be addressed involved assessing the potential benefits and implications of the resulting porosity realizations in terms of groundwater flow and contaminant transport. This was investigated synthetically assuming first that the relationship between porosity and hydraulic conductivity was well-defined. Then, the relationship was itself investigated in the context of a calibration procedure using hypothetical tracer test data. Essentially, the relationship best predicting the observed tracer test measurements was determined given the geophysically derived porosity structure. Both of these investigations showed that the SA-based approach, in general, allows much more reliable hydrological predictions than other more elementary techniques considered. Further, the developed calibration procedure was seen to be very effective, even at the scale of tomographic resolution, for predictions of transport. This also held true at locations within the aquifer where only geophysical data were available. This is significant because the acquisition of hydrological tracer test measurements is clearly more complicated and expensive than the acquisition of geophysical measurements. Although the above methodologies were tested using porosity logs and GPR data, the findings are expected to remain valid for a large number of pertinent combinations of geophysical and borehole log data of comparable resolution and sensitivity to the hydrological target parameter. Moreover, the obtained results allow us to have confidence for future developments in integration methodologies for geophysical and hydrological data to improve the 3-D estimation of hydrological properties.
Resumo:
on agricultural hydraulics and rural development has been the main activity of the author in the last two decades. A large part of the professional career was devoted to studies and design of hydraulic infrastructures for the establishment of irrigation in Portugal. The recent years of his professional career focused on the internationalization of consulting services by drafting general plans, technical advises, design projects, training and specialized technical assistance to farmers and technicians. Angola and Cape Verde have been the stage of action. The present document was written with two main objectives: to obtain a Master of Science degree and to share with the community some relevant aspects of author’s work experience. The document was structured to emphasize three major units: the agricultural hydraulics, rural development and studies and projects. For these units were selected groups of activities considered relevant to the author's career: Alqueva Multi-Purpose Scheme, Rehabilitation and Modernization of Hydro-agricultural Schemes, Other Studies and Projects, Master Plans and Reports and Agriculture and Rural Development. In every activity is highlighted the aspects considered most important and which reflect the author's experience.
Resumo:
Faced with recurrent drought and famine during five centuries of human occupation, the small and densely populated Cape Verde Islands have a history of severe environmental problems. The arid climate and steep, rocky terrain provide scant resources for traditional subsistance farming under the best conditions, and in years of low rainfall the failure of rainfed crops causes massive food shortages. Agricultural use of steep slopes where rainfall is highest has led to soil erosion, as has removal of the island's vegetation for fuel and livestock. Pressure on the vegetation is particularly severe in dry years. International aid can provide relief from famine, and the introduction of modern agricultural and conservation techniques can improve the land and increase yield, but it is unlikely that Cape Verde can ever be entirely self -sufficient in food. Ultimately, the solution of Cape Verde's economic and environmental problems will probably require the development of productive urban jobs so the population can shift away from the intensive and destructive use of land for subsistance farming. In the meantime, the people of Cape Verde can best be served by instituting fundamental measures to conserve and restore the land so that it can be used to its fullest potential. The primary environmental problems in Cape Verde today are: 1. Soil degradation. Encouraged by brief but heavy rains and steep slopes, soil erosion is made worse by lack of vegetation. Soils are also low in organic matter due to the practice of completely removing crop plants and natural vegetation for food, fuel or livestock feed. 2. Water shortage. Brief and erratic rainfall in combination with rapid runoff makes surface water scarce and difficult to use. Groundwater supplies can be better developed but capabilities are poorly known and the complex nature of the geological substrate makes estimation difficult. Water is the critical limiting factor to the agricultural capability of the islands. 3. Fuel shortage. Demand for fuel is intense and has resulted in the virtual elimination of native vegetation. Fuelwood supplies are becoming more and more scarce and costly. Development of managed fuelwood plantations and alternate energy sources is required. 4. Inappropriate land use. Much of the land now used for raising crops or livestock is too steep or too arid for these purposes, causing erosion and destruction of vegetation. Improving yield in more appropriate areas and encouraging less damaging uses of the remaining marginal lands can help to alleviate this problem.
Resumo:
Este artículo tiene por finalidad analizar las medidas de adaptación al riesgo de inundación que se han realizado en el ámbito de la Costa Brava, con especial incidencia en el papel que han tenido las obras de infraestructura hidráulica en la prevención de avenidas. Se intenta comprobar hasta que punto la percepción local dominante sobre las obras hidráulicas como una de las formas más eficientes pera la prevención de inundaciones se contradice con las nuevas tendencias tanto en relación a los costes ecológicos de la construcción de estos dispositivos hidráulicos como al planeamiento urbanístico y fluvial, en general
Resumo:
Sobre la surgència d'aigua entre materials calcaris a la població de Cinc Claus (L' Escala)
Resumo:
The area known as 'prats de Sant Sebastià' is in Caldes de Malavella. It is part of the wetlands located in the south-eastern end of the Selva Basin. Several areas with unusually high conductivity (EC up to 24,500 uS/cm) have been identified in this place. This fact allows highly specialised and comparatively rare botanical species to grow in this area. These saline soils follow a north-south line-up. The geophysical data, obtained with a field conductivemeter (EM 31), show that this superficial line-up continues in the subsoil. In addition to this, the conductivity cartography, made for an electromagnetic exploration depth of 6 meters, shows that the width of the region where these salinity anomalies take place increases in depth. When included in the hidrogeological context of this sector of the Selva Basin, these data bring new elements for the study of the genesis and working of these marshy environments.The model that future research will have to confirm, maintains that the groundwater discharges coming from the underlying hydrogeothermal aquifer are a conditioning factor of the aforementioned phenomenon. This ascending flow of highly mineralised waters (TDS of about 3,500 mg/l) can produce and keep stable the soil salinity
Resumo:
Oxygen and carbon isotope compositions of well-preserved mammoth teeth from the Middle Wurmian (40-70 ka) peat layer of Niederweningen, the most important mammoth site in Switzerland, were analysed to reconstruct Late Pleistocene palaeoclimatic and palaeoenvironmental conditions. Drinking water (delta(18)O values of approximately -12.3 +/- 0.9 parts per thousand were calculated front oxygen isotope compositions of mammoth tooth enamel apatite using a species-specific calibration for modern elephants. These delta(18)O(H2O) values reflect the mean oxygen isotope composition of the palaeo-precipitation and are similar to those directly measured for fate Pleistocene groundwater from aquifers in northern Switzerland and southern Germany. Using a present-day delta(18)O(H2)o-precipitation-air temperature relation for Switzerland, a mean annual air temperature (MAT) of around 4.3 +/- 2.1 degrees C can be calculated for the Middle Wurmian at this site. This MAT is in good agreement with palaeotemperature estimates on the basis of Middle Wurmian groundwater recharge temperatures and beetle assemblages. Hence, the climatic conditions in this region were around 4 degrees C cooler during the Middle Wurmian interstadial phase, around 45-50ka BP, than they are today. During this period the mammoths from Niederweningen lived in an open tundra-like, C(3) plant-dominated environment as indicated by enamel (delta(13)C values of -11.5 +/- 0.3 parts per thousand and pollen and macroplant fossils found in the embedding peat. The low variability of enamel delta(13)C and delta(18)O values from different mammoth teeth reflects similar environmental conditions and supports a relatively small time frame for the fossil assemblage. (C) 2006 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
This study compares the chemical composition of the solution and exchange complex of soil in a 3-year-old irrigated vineyard (Vitis vinifera L., Red Globe cultivar) with that of adjacent clearing in the native hyperxerophyllic 'caatinga' vegetation. The soils are classified as Plinthic Eutrophic Red-Yellow Argisol; according to Soil Taxonomy they are isohyperthermic Plinthustalfs. Detailed physiographic characterization revealed an impermeable gravel and cobble covering the crystalline rocks; the relief of this layer was more undulating than the level surface. Significant higher concentrations of extractable Na, K, Mg and Ca were observed within the vineyard. Lower soil acidity, higher Ca/Mg ratios, as well as lower sodium adsorption and Na/K ratios reflected additions of dolomitic lime, superphosphate and K-bearing fertilizers. As the water of the São Francisco River is of good quality for irrigation (C1S1), the increases in Na were primarily attributed to capillary rise from the saline groundwater table. None of the soil in the study area was found to be sodic. About 62% of the vineyard had an Ap horizon with salinity levels above 1.5dSm-1 (considered detrimental for grape production); according to average values for this horizon, a potential 13% reduction in grape production was predicted. Differences in chemical composition in function of distance to the collector canals were observed in the clearing, but not in the vineyard. The influence of differences in the elevations of the surface and impermeable layers, as well as pediment thickness, was generally weaker under irrigation. Under irrigation, soil moisture was greater in points of convergent surface waterflow; the effect of surface curvature on chemical properties, though less consistent, was also stronger in the vineyard.
Resumo:
The Baix Empordà-Selva-Gavarres aquifer system is related to the fault set that created the tectonic basins of Empordà and Selva areas (NE Spain) during the Neogene. In this work, we describe groundwater hydrogeological, hydrochemical and isotopical (3H, δD, δ18O, and the 87Sr/86Sr ratio) characteristics of this system in order to illustrate the relevance of fault zones in groundwater flow-paths and the recharge. In that way, we identify two flow systems, with distinct hydrochemistry and isotopes. A local flow system originates at the Gavarres Range, and it flows towards the basins of the Baix Empordà and Selva, with an approximate residence time of 20 years. Additionally, a regional flow system has only been identified in the Selva basin. This one is related to the main fault zones, as preferential flow paths. Its recharge is located in mountain ranges with higher altitudes, namely the Transversal and Guilleries Ranges, with residence times larger than 50 years. Isotopical data has also shown mixing processes between both flow systems and rainfall recharge while multivariate statistical analysis of principal components has shown the main processes that control hydrochemistry of each flow systems