924 resultados para Greenhouse gases emissions inventory
Resumo:
The development of nations depends on energy consumption, which is generally based on fossil fuels. This dependency produces irreversible and dramatic effects on the environment, e.g. large greenhouse gas emissions, which in turn cause global warming and climate changes, responsible for the rise of the sea level, floods, and other extreme weather events. Transportation is one of the main uses of energy, and its excessive fossil fuel dependency is driving the search for alternative and sustainable sources of energy such as microalgae, from which biodiesel, among other useful compounds, can be obtained. The process includes harvesting and drying, two energy consuming steps, which are, therefore, expensive and unsustainable. The goal of this EPS@ISEP Spring 2013 project was to develop a solar microalgae dryer for the microalgae laboratory of ISEP. A multinational team of five students from distinct fields of study was responsible for designing and building the solar microalgae dryer prototype. The prototype includes a control system to ensure that the microalgae are not destroyed during the drying process. The solar microalgae dryer works as a distiller, extracting the excess water from the microalgae suspension. This paper details the design steps, the building technologies, the ethical and sustainable concerns and compares the prototype with existing solutions. The proposed sustainable microalgae drying process is competitive as far as energy usage is concerned. Finally, the project contributed to increase the deontological ethics, social compromise skills and sustainable development awareness of the students.
Resumo:
In the field of energy, natural gas is an essential bridge to a clean, low carbon, renewable energy era. However, natural gas processing and transportation regulation require the removal of contaminant compounds such as carbon dioxide (CO2). Regarding clean air, the increasing atmospheric concentrations of greenhouse gases, specifically CO2, is of particular concern. Therefore, new costeffective, high performance technologies for carbon capture have been researched and the design of materials with the ability to efficiently separate CO2 from other gases is of vital importance.(...)
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.
Resumo:
Carbon dioxide valorization, will not only help to relieve the greenhouse effect but might also allow us to transform it in value-added chemicals that will help overcoming the energy crisis. To accomplish this goal, more research that focus on sequestering CO2 and endeavors through a carbon-neutral or carbon-negative strategy is needed in order to handle with the dwindling fossil fuel supplies and their environmental impact. Formate dehydrogenases are a promising means of turning CO2 into a biofuel that will allow for a reduction of greenhouse gas emissions and for a significant change to the economic paramount. The main objective of this work was to assess whether a NAD+-independent molybdenum-containing formate dehydrogenase is able to catalyze the reduction of CO2 to formate. To achieve this, a molybdenum-containing formate dehydrogenase was isolated from the sulfate reducing bacteria Desulfovibrio desulfuricans ATCC 27774. Growth conditions were found that allowed for a greater cellular mass recovery and formate dehydrogenase expression. After growth trials, kinetic assays for formate oxidation and CO2 reduction were performed and kinetic parameters determined. For the formate oxidation reaction, a KM of 49 μM and a turnover constant of 146 s-1 were determined. These kinetic parameters are in agreement with those determined by Mota, et al. (2011). Finally, we found that this molybdenum-containing enzyme was able to catalyze the reduction of CO2 to formate with a turnover constant of 4.6 s-1 and a KM of 13 μM. For the first time a NAD+-independent molybdenum-containing formate dehydrogenase was found to catalyze CO2 reduction, allowing its use as a biocatalyst in energetically efficient CO2 fixation processes that can be directed towards bioremediation or as an alternative and renewable energy source. Characterizing these enzymes may lead to the development of more efficient synthetic catalysts, make them readily available and more suited for practical applications.
Resumo:
Dissertação de Mestrado em Engenharia Informática
Resumo:
Current societal challenges increasingly demand the need to seek for efficient and sustainable solutions to daily problems. Construction, as a result of its activity, is one of the main responsible industry for the exploitation of resources and greenhouse gas emissions. In this way, several research works are being undertaken to change some of the current practices. This paper presents the work being done at University of Minho to study de degradation of natural fibers when used as a sustainable solution for soil reinforcement. Jute and sisal fibrous structures (0º/90º) were studied in terms of their degradation over time, when incorporated into soil and when subject to accelerated aging tests in a QUV weathering test equipment. Results show that the process of biodegradation of natural fibers is clearly accelerated by the action of temperature, moisture and solar radiation, explaining further degradation of jute and sisal fibers when exposed to these factors, although more pronounced in jute fabric structures.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
This article offers a review of research and policy on climate change in Portugal and is organized into three main themes: scientific knowledge and assessment of climate change; policy analysis and evaluation; and public engagement. Modern scientific research on meteorology and climatology started in Portugal in the 1950s and a strong community of researchers in climate science, vulnerabilities, impacts, and adaptation has since developed, particularly in the last decade. Nevertheless, there are still many gaps in research, especially regarding the economic costs of climate change in Portugal and costs and benefits of adaptation. Governmental policies with a strong emphasis on mitigation were introduced at the end of the 1990s. As greenhouse gas emissions continued to rise beyond its Kyoto target for 2012, the country had to resort to the Kyoto Flexibility Mechanisms in order to comply. Climate change adaptation policies were introduced in 2010 but are far from being fully implemented. Regarding public engagement with climate change, high levels of concern contrast with limited understanding and rather weak behavioral dispositions to address climate change. Citizens display a heavy reliance on the media as sources of information, which are dominated by a techno-managerial discourse mainly focused on the global level. The final part of the article identifies research gaps and outlines a research agenda. Connections between policy and research are also discussed
Resumo:
Transportation geotechnics associated with constructing and maintaining properly functioning transportation infrastructure is a very resource intensive activity. Large amounts of materials and natural resources are required, consuming proportionately large amounts of energy and fuel. Thus, the implementation of the principles of sustainability is important to reduce energy consumption, carbon footprint, greenhouse gas emissions, and to increase material reuse/recycling, for example. This paper focusses on some issues and activities relevant to sustainable earthwork construction aimed at minimising the use of energy and the production of CO2 while improving the in-situ ground to enable its use as a foundation without the consumption of large amounts of primary aggregate as additional foundation layers. The use of recycled materials is discussed, including steel slag and tyre bales, alongside a conceptual framework for evaluating the utility of applications for recycled materials in transportation infrastructure.
Resumo:
This thesis investigates the challenges of establishing the electric vehicle (EV) in Ireland and how the Irish government and industry are trying to meet them. It further seeks to provide information on Irish consumers’ attitudes towards the electric vehicle and their willingness to purchase it. The review of the literature showed that the Irish government is investing significant funds in trying to establish the market for the electric vehicle and position itself as a world leader in adopting the electric vehicle. The EV will also have an important role to play in how Ireland meets its targets for CO2 reductions towards 2020. Climate change and use of fossil fuels are driving the need for increased use of renewable energy and increased energy independence while reducing the greenhouse gas emissions that are the leading cause of climate change. The transport sector is almost completely dependent on the use of fossil fuel and resultantly is one of the largest sources of these GHG emissions. These issues are leading to the design and production of more energy efficient and environmentally friendly vehicles. The ultimate goal is to achieve a zero emissions vehicle. The electric vehicle is presently the only vehicle being mass produced that has the potential to be zero emissions. There are however issues that customers may not be willing to overlook such as the lower range of the vehicle and the length of time it takes to recharge. Vehicle cost is also an important issue that customers may not overlook. Knowing what the consumer’s attitudes are towards the EV and their willingness to purchase them is important as these new vehicles begin to appear in the showrooms. The consumers will be vital to how successful this market becomes. Using an online questionnaire methodology, in a sample of 118 consumers, the major conclusion to be drawn from the research is that the vehicle price, the convenience to recharge and vehicle range were the three most essential issues for the consumers if they were purchasing an EV. The success of the electric vehicle market may depend on what measures are taken to overcome them.
Resumo:
A gradual increase in Earth's surface temperatures marking the transition from the late Paleocene to early Eocene (55.8±0.2Ma), represents an extraordinary warming event known as Paleocene-Eocene Thermal Maximum (PETM). Both marine and continental sedimentary records during this period reveal evidences for the massive injection of isotopically light carbon. The carbon dioxide injection from multiple potential sources may have triggered the global warming. The importance of the PETM studies is due to the fact that the PETM bears some striking resemblances to the human-caused climate change unfolding today. Most notably, the culprit behind it was a massive injection of heat-trapping greenhouse gases into the atmosphere and oceans, comparable in volume to what our persistent burning of fossil fuels could deliver in coming centuries. The exact knowledge of what went on during the PETM could help us to foresee the future climate change. The response of the oceanic and continental environments to the PETM is different. Many factors might control the response of the environments to the PETM such as paleogeography, paleotopography, paleoenvironment, and paleodepth. To better understand the mechanisms triggering PETM events, two different environments were studied: 1) shallow marine to inner shelf environment (Wadi Nukhul, Sinai; and the Dababiya GSSP, Luxor, Egypt), and 2) terrestrial environments (northwestern India lignite mines) representing wetland, and fluvial environments (Esplugafreda, Spain) both highlighting the climatic changes observed in continental conditions. In the marine realm, the PETM is characterized by negative ö13Ccar and ô13Corg excursions and shifts in Ô15N to ~0%o values above the P/E boundary and persisting along the interval suggesting a bloom and high production of atmospheric N2-fixers. Decrease in carbonate contents could be due to dissolution and/or dilution by increasing detrital input. High Ti, K and Zr and decreased Si contents at the P/E boundary indicate high weathering index (CIA), which coincides with significant kaolinite input and suggests intense chemical weathering under humid conditions at the beginning of the PETM. Two anoxic intervals are observed along the PETM. The lower one may be linked to methane released from the continental shelf with no change in the redox proxies, where the upper anoxic to euxinic conditions are revealed by increasing U, Mo, V, Fe and the presence of small size pyrite framboids (2-5fim). Productivity sensitive elements (Cu, Ni, and Cd) show their maximum concentrated within the upper anoxic interval suggesting high productivity in surface water. The obtained data highlight that intense weathering and subsequent nutrient inputs are crucial parameters in the chain of the PETM events, triggering productivity during the recovery phase. In the terrestrial environments, the establishment of wetland conditions and consequence continental climatic shift towards more humid conditions led to migration of modern mammals northward following the extension of the tropical belts. Relative ages of this mammal event based on bio-chemo- and paleomagnetic stratigraphy support a migration path originating from Asia into Europe and North America, followed by later migration from Asia into India and suggests a barrier to migration that is likely linked to the timing of the India-Asia collision. In contrast, at Esplugafereda, northeastern Spain, the terrestrial environment reacted differently. Two significant S13C shifts with the lower one linked to the PETM and the upper corresponding to the Early Eocene Thermal Maximum (ETM2); 180/160 paleothermometry performed on two different soil carbonate nodule reveal a temperature increase of around 8°C during the PETM. The prominent increase in kaolinite content within the PETM is linked to increased runoff and/or weathering of adjacent and coeval soils. These results demonstrate that the PETM coincides globally with extreme climatic fluctuations and that terrestrial environments are very likely to record such climatic changes. - La transition Paléocène-Eocène (55,8±0,2 Ma) est marquée par un réchauffement extraordinaire communément appelé « Paleocene-Eocene Thermal Maximum » (PETM). Les données géochimiques caractérisant les sédiments marins et continentaux de cette période indiquent que ce réchauffement a été déclenché par une augmentation massive de CO2 lié à la déstabilisation des hydrates de méthane stockés le long des marges océaniques. L'étude des événements PETM constitue donc un bon analogue avec le réchauffement actuel. Le volume de CO2 émis durant le PETM est comparable avec le CO2 lié à l'activité actuelle humaine. La compréhension des causes du réchauffement du PETM peut être cruciale pour prévoir et évaluer les conséquences du réchauffement anthropogénique, en particulier les répercussions d'un tel réchauffement sur les domaines continentaux et océaniques. De nombreux facteurs entrent en ligne de compte dans le cas du PETM, tels que la paléogéographie, la paléotopographie et les paléoenvironnement. Pour mieux comprendre les réponses environnementales aux événements du PETM, 2 types d'environnements ont été choisis : (1) le domaine marin ouvert mais relativement peu profond (Wadi Nukhul. Sinai, Dababiya, Luxor, Egypte), (2) le milieu continental marécageux humide (mines de lignite, Inde) et fluviatile, semi-aride (Esplugafreda, Pyrénées espagnoles). Dans le domaine marin, le PETM est caractérisé par des excursions négatives du ô13Ccar et ô13Corg et un shift persistant des valeurs de 815N à ~ 0 %o indiquant une forte activité des organismes (bactéries) fixant l'azote. La diminution des carbonates observée durant le PETM peut-être due à des phénomènes de dissolution ou une augmentation des apports terrigènes. Des taux élevés en Ti, K et Zr et une diminution des montants de Si, reflétés par des valeurs des indices d'altération (CIA) qui coïncident avec une augmentation significative des apports de kaolinite impliquent une altération chimique accrue, du fait de conditions plus humides au début du PETM. Deux événements anoxiques globaux ont été mis en évidence durant le PETM. Le premier, situé dans la partie inférieur du PETM, serait lié à la libération des hydrates de méthane stockés le long des talus continentaux et ne correspond pas à des variations significatives des éléments sensibles aux changements de conditions redox. Le second est caractérisé par une augmentation des éléments U, Mo, V et Fe et la présence de petit framboids de pyrite dont la taille varie entre 2 et 5pm. Le second épisode anoxique est caractérisé par une forte augmentation des éléments sensibles aux changements de la productivité (Cu, Ni et Co), indiquant une augmentation de la productivité dans les eaux de surface. Les données obtenues mettent en évidence le rôle crucial joué par l'altération et les apports en nutriments qui en découlent. Ces paramètres sont cruciaux pour la succession des événements qui ont conduit au PETM, et plus particulièrement l'augmentation de la productivité dans la phase de récupération. Durant le PETM, le milieu continental est caractérisé par l'établissement de conditions humides qui ont facilité voir provoqué la migration des mammifères modernes qui ont suivi le déplacement de ces ceintures climatiques. L'âge de cette migration est basé sur des arguments chimiostratigraphiques (isotopes stables), biostratigraphiques et paléomagnétiques. Les données bibliographiques ainsi que celles que nous avons récoltées en Inde, montrent que les mammifères modernes ont d'abord migré depuis l'Asie vers l'Europe, puis dans le continent Nord américain. Ces derniers ne sont arrivés en Inde que plus tardivement, suggérant que le temps de leur migration est lié à la collision Inde-Asie. Dans le Nord-Est de l'Espagne (Esplugafreda), la réponse du milieu continental aux événements PETM est assez différente. Comme en Inde, deux excursions signicatives en ô13C ont été observées. La première correspond au PETM et la seconde est corrélée avec l'optimum thermique de l'Eocène précoce (ETM2). Les isotopes stables de l'oxygène mesurés 2 différents types de nodules calcaires provenant de paléosols suggère une augmentation de 10°C pendant le PETM. Une augmentation simultanée des taux de kaolinite indique une intensification de l'altération chimique et/ou de l'érosion de sols adjacents. Ces résultats démontrent que le PETM coïncide globalement avec des variations climatiques extrêmes qui sont très aisément reconnaissables dans les dépôts continentaux.
Resumo:
The main purpose of the Clmate Change Bill is to provide for the adoption of a national policy for reducing greenhouse gas (GHG) emissions; to support this through the making of mitigation and adaptation action plans; and to make provision for emission reduction targets to support the objective of transition to a low carbon, climate resilient and environmentally sustainable economy.The remit of the Institute of Public Health in Ireland (IPH) is to promote cooperation for public health between Northern Ireland and the Republic of Ireland in the areas of research and information, capacity building and policy advice. Our approach is to support Departments of Health and their agencies in both jurisdictions, and maximise the benefits of all-island cooperation to achieve practical benefits for people in Northern Ireland and the Republic of Ireland.IPH has a keen interest in the effects of climate change on health. In September 2010 the IPH published a paper – Climate Change and Health: A platform for action - to inform policy-makers and the public about the health benefits in reducing greenhouse gas emissions. This paper followed a seminar with international speakers, opened by Minister Gormley, on the same topic in February 2010.
Resumo:
The Amazon Fund, created in 2008 by the Brazilian Federal Government, is managed by Banco Nacional de Desenvolvimento Econômico e Social (BNDES). It is a pioneering initiative to fundraise and manage financial resources to cut back deforestation and support sustainable development for 30 million inhabitants in the Amazon Biome. The Amazon Fund has already received more than R$ 1.7 billion in grants (about USD 787 million). This essay analyzes the Amazon Fund's governance and management with focus on its operation and from its stakeholders' perspectives. A combination of research methods includes: documental research, in-depth interviews, and speech analysis. The study offers a comparative analysis of strengths and weaknesses related to its governance. Furthermore, it proposes ways to improve its management towards greater effectiveness. The essay also includes an assessment of the government of Norway, a major donor to the fund. The governments of Norway and Germany, in partnership with Brazil, reveal how important it is to experiment with new means of international cooperation to successfully reduce greenhouse gas emissions through rainforest preservation.
Resumo:
For a variety of reasons, the concrete construction industry is not sustainable. First, it consumes huge quantities of virgin materials. Second, the principal binder in concrete is portland cement, the production of which is a major contributor to greenhouse gas emissions that are implicated in global warming and climate change. Third, many concrete structures suffer from lack of durability which has an adverse effect on the resource productivity of the industry. Because the high-volume fly ash concrete system addresses all three sustainability issues, its adoption will enable the concrete construction industry to become more sustainable. In this paper, a brief review is presented of the theory and construction practice with concrete mixtures containing more than 50% fly ash by mass of the cementitious material. Mechanisms are discussed by which the incorporation of high volume of fly ash in concrete reduces the water demand, improves the workability, minimizes cracking due to thermal and drying shrinkage, and enhances durability to reinforcement corrosion, sulfate attack, and alkali-silica expansion. For countries like China and India, this technology can play an important role in meeting the huge demand for infrastructure in a sustainable manner.
Resumo:
This paper proposes a framework to examine business ethical dilemmas andbusiness attitudes towards such dilemmas. Business ethical dilemmas canbe understood as reflecting a contradiction between a socially detrimentalprocess and a self-interested profitable consequence. This representationallows us to distinguish two forms of behavior differing by whetherpriority is put on consequences or on processes. We argue that theseforms imply very different business attitudes towards society:controversial or competitive for the former and aligned or cooperativefor the latter. These attitudes are then analyzed at the discursive level in order to address the question of good faith in businessargumentation, i.e. to which extent are these attitudes consistent withactual business behaviors. We argue that consequential attitudes mostlyinvolve communication and lobbying actions aiming at eluding the dilemma.Therefore, the question of good faith for consequential attitudes liesin the consistency between beliefs and discourse. On the other hand,procedural attitudes acknowledge the dilemma and claim a change of theprocess of behavior. They thus raise the question of the consistencybetween discourses and actual behavior. We apply this processes/consequencesframework to the case of the oil industry s climate change ethical dilemmawhich comes forth as a dilemma between emitting greenhouse gases and making more profits . And we examine the different attitudes of two oilcorporations-BP Amoco and ExxonMobil-towards the dilemma.