892 resultados para Gonadotropins mrna levels


Relevância:

80.00% 80.00%

Publicador:

Resumo:

CONTEXT: The success of pancreatic islet transplantation depends largely on the capacity of the islet graft to survive the initial phase immediately after transplantation until revascularization is completed. Endothelin-1 (ET-1) is a strong vasoconstrictor which has been involved in solid organ graft failure but is also known to be a potent mitogenic/anti-apoptotic factor which could also potentially enhance the survival of the transplanted islets. OBJECTIVE: Characterization of the endothelin system with regard to a potential endothelin agonist/antagonist treatment. DESIGN: Regulated expression of the endothelin system in human and rat pancreatic islets and beta-cell lines was assessed by means of immunohistochemistry, competition binding studies, western blot, RT-PCR, real-time PCR and transplant studies. RESULTS: ET-1, ETA- and ETB-receptor immunoreactivity was identified in the endocrine cells of human and rat pancreatic islets. The corresponding mRNA was detectable in rat beta-cell lines and isolated rat and human pancreatic islets. Competition binding studies on rat islets revealed binding sites for both receptor types. ET-1 stimulated the phosphorylation of mitogen-activated protein kinase, which was prevented by ETA- and ETB-receptor antagonists. After exposure to hypoxia equal to post-transplant environment oxygen tension, mRNA levels of ET-1 and ETB-receptor of human islets were robustly induced whereas ETA-receptor mRNA did not show significant changes. Immunostaining signals for ET-1 and ETA-receptor of transplanted rat islets were markedly decreased when compared to native pancreatic sections. CONCLUSIONS: In pancreatic islets, ET-1 and its receptors are differentially expressed by hypoxia and after transplantation. Our results provide the biological basis for the study of the potential use of endothelin agonists/antagonists to improve islet transplantation outcome.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have investigated the influence of long-term confined dynamic compression and surface motion under low oxygen tension on tissue-engineered cell-scaffold constructs. Porous polyurethane scaffolds (8 mm x 4 mm) were seeded with bovine articular chondrocytes and cultured under normoxic (21% O(2)) or hypoxic (5% O(2)) conditions for up to 4 weeks. By means of our joint-simulating bioreactor, cyclic axial compression (10-20%; 0.5 Hz) was applied for 1 h daily with a ceramic ball, which simultaneously oscillated over the construct surface (+/-25 degrees; 0.5 Hz). Culture under reduced oxygen tension resulted in an increase in mRNA levels of type II collagen and aggrecan, whereas the expression of type I collagen was down-regulated at early time points. A higher glycosaminoglycan content was found in hypoxic than in normoxic constructs. Immunohistochemical analysis showed more intense type II and weaker type I collagen staining in hypoxic than in normoxic cultures. Type II collagen gene expression was slightly elevated after short-term loading, whereas aggrecan mRNA levels were not influenced by the applied mechanical stimuli. Of importance, the combination of loading and low oxygen tension resulted in a further down-regulation of collagen type I mRNA expression, contributing to the stabilization of the chondrocytic phenotype. Histological results confirmed the beneficial effect of mechanical loading on chondrocyte matrix synthesis. Thus, mechanical stimulation combined with low oxygen tension is an effective tool for modulating the chondrocytic phenotype and should be considered when chondrocytes or mesenchymal stem cells are cultured and differentiated with the aim of generating cartilage-like tissue in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by binding to target mRNAs, which leads to reduced protein synthesis and sometimes decreased steady-state mRNA levels. Although hundreds of miRNAs have been identified, much less is known about their biological function. Several studies have provided evidence that miRNAs affect pathways that are fundamental for metabolic control in higher organisms such as adipocyte and skeletal muscle differentiation. Furthermore, some miRNAs have been implicated in lipid, amino acid, and glucose homeostasis. These studies open the possibility that miRNAs may contribute to common metabolic diseases and point to novel therapeutic opportunities based on targeting of miRNAs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Testosterone (T) is a therapeutic option for women with hypoactive sexual desire disorder. T may have an impact on the mammary gland by altering local estrogen synthesis. The aim of the present study was to measure the effect of T on estrone-sulfate (E1S)-sulfatase (STS) expression, and activity using hormone-dependent BC cells with high and low aggressive potential (BT-474, MCF-7), and HBL-100 as a breast cell line of non-malignant origin. METHODS: Cells were incubated in RPMI 1640 medium containing 5% steroid-depleted fetal calf serum for 3d, and subsequently incubated in absence or presence of T alone, and combined with anastrozole (A) at 10(-8)M, and 10(-6)M at 37 degrees C for either 24h or directly in cell extracts ("direct"). STS protein expression was measured by dot-blot (immunoblotting), and STS, HSD17B1 and HSD17B2 mRNA levels by quantitative RT-PCR. STS activity was evaluated by incubating homogenized breast cells with [(3)H]-E1S and separating the products E1, and E2 by thin layer chromatography. RESULTS: Basal STS mRNA expression did not reveal group differences. However, STS mRNA was decreased by T+A in MCF-7 cells. 17HSDB1 expression was decreased by T+A in BT-474 cells, and 17HSDB2 expression was decreased by A and T+A treatment in MCF-7 cells. Basal and T treated STS protein expression was significantly higher in malignant compared to non-malignant breast cells. However, T did not induce significant intra-cell line differences. Similarly, basal and T treated STS activity was significantly higher in highly malignant compared to non-malignant breast cells. Regardless of cell lines, T slightly decreased STS activity after "direct" incubation, but led to an increase of local estrogen formation after 24h which was attenuated, and partly reversed by A, respectively. CONCLUSIONS: The more aggressive the breast cell line, the higher the local estrogen formation. The transition from normal to malignant seems to be accompanied by an altered autoregulation. The given local endocrine milieu seems to be essential for response to T.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Expression of the extracellular matrix (ECM) protein tenascin-C is induced in fibroblasts by growth factors as well as by tensile strain. Mechanical stress can act on gene regulation directly, or indirectly via the paracrine release of soluble factors by the stimulated cells. To distinguish between these possibilities for tenascin-C, we asked whether cyclic tensile strain and soluble factors, respectively, induced its mRNA via related or separate mechanisms. When cyclic strain was applied to chick embryo fibroblasts cultured on silicone membranes, tenascin-C mRNA and protein levels were increased twofold within 6 h compared to the resting control. Medium conditioned by strained cells did not stimulate tenascin-C mRNA in resting cells. Tenascin-C mRNA in resting cells was increased by serum; however, cyclic strain still caused an additional induction. Likewise, the effect of TGF-beta1 or PDGF-BB was additive to that of cyclic strain, whereas IL-4 or H2O2 (a reactive oxygen species, ROS) did not change tenascin-C mRNA levels. Antagonists for distinct mitogen-activated protein kinases (MAPK) inhibited tenascin-C induction by TGF-beta1 and PDGF-BB, but not by cyclic strain. Conversely, a specific inhibitor of Rho-dependent kinase strongly attenuated the response of tenascin-C mRNA to cyclic strain, but had limited effect on induction by growth factors. The data suggest that regulation of tenascin-C in fibroblasts by cyclic strain occurs independently from soluble mediators and MAPK pathways; however, it requires Rho/ROCK signaling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tight homeostatic control of brain amino acids (AA) depends on transport by solute carrier family proteins expressed by the blood-brain barrier (BBB) microvascular endothelial cells (BMEC). To characterize the mouse BMEC transcriptome and probe culture-induced changes, microarray analyses of platelet endothelial cell adhesion molecule-1-positive (PECAM1(+)) endothelial cells (ppMBMECs) were compared with primary MBMECs (pMBMEC) cultured in the presence or absence of glial cells and with b.End5 endothelioma cell line. Selected cell marker and AA transporter mRNA levels were further verified by reverse transcription real-time PCR. Regardless of glial coculture, expression of a large subset of genes was strongly altered by a brief culture step. This is consistent with the known dependence of BMECs on in vivo interactions to maintain physiologic functions, for example, tight barrier formation, and their consequent dedifferentiation in culture. Seven (4F2hc, Lat1, Taut, Snat3, Snat5, Xpct, and Cat1) of nine AA transporter mRNAs highly expressed in freshly isolated ppMBMECs were strongly downregulated for all cultures and two (Snat2 and Eaat3) were variably regulated. In contrast, five AA transporter mRNAs with low expression in ppMBMECs, including y(+)Lat2, xCT, and Snat1, were upregulated by culture. We hypothesized that the AA transporters highly expressed in ppMBMECs and downregulated in culture have a major in vivo function for BBB transendothelial transport.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The assessment of ERa, PgR and HER2 status is routinely performed today to determine the endocrine responsiveness of breast cancer samples. Such determination is usually accomplished by means of immunohistochemistry and in case of HER2 amplification by means of fluorescent in situ hybridization (FISH). The analysis of these markers can be improved by simultaneous measurements using quantitative real-time PCR (Qrt-PCR). In this study we compared Qrt-PCR results for the assessment of mRNA levels of ERa, PgR, and the members of the human epidermal growth factor receptor family, HER1, HER2, HER3 and HER4. The results were obtained in two independent laboratories using two different methods, SYBR Green I and TaqMan probes, and different primers. By linear regression we demonstrated a good concordance for all six markers. The quantitative mRNA expression levels of ERa, PgR and HER2 also strongly correlated with the respective quantitative protein expression levels prospectively detected by EIA in both laboratories. In addition, HER2 mRNA expression levels correlated well with gene amplification detected by FISH in the same biopsies. Our results indicate that both Qrt-PCR methods were robust and sensitive tools for routine diagnostics and consistent with standard methodologies. The developed simultaneous assessment of several biomarkers is fast and labor effective and allows optimization of the clinical decision-making process in breast cancer tissue and/or core biopsies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metzincins, such as matrix metalloproteases (MMP), and extracellular matrix (ECM) proteins are differentially regulated in inflammation. We hypothesised that metzincins are also dysregulated in experimental acute cardiac allograft rejection. We investigated the Dark Agouti-to-Lewis (DA-to-Lew) rat model of acute cardiac allograft rejection. Cyclosporine (CsA) (7.5 mg/kg/d) was given from transplantation to sacrifice (day +5). At that time, mRNA levels were analysed by Affymetrix genechip and quantitative reverse transcription polymerase chain reaction (qRTPCR). MMP protein and activities were analysed by immunohistology, fluorometry, zymography and Western blots. In untreated rejected DA allografts, mRNA levels of MMP-2/-7/-9/-/12-/14, a disintegrin and metalloprotease (ADAM)-17, tissue inhibitor of metalloprotease (TIMP)-1/-3 were increased, whereas MMP-11/-16/-24 and TIMP-2/-4 were lowered compared to native DA hearts. With respect to these untreated allografts, CsA lowered mRNA levels of MMP-7, TIMP-1/-3 (TIMP-2/-4 remained relatively low) and ADAM17, but augmented mRNA levels of MMP-11/-16/-23 and of many ECM genes. Immunohistology showed increased staining of MMP-2 in acute rejection (AR). Overall MMP activity was augmented in both transplanted groups, but CsA reduced MMP-9 activity and MMP-14 production. Taken together, MMP and TIMP were upregulated during acute AR. CsA ameliorated histology of rejection but showed potential pro-fibrotic effects. Thus, MMP and TIMP may play a role in acute cardiac allograft rejection, and beneficial modification of the MMP-ECM balance requires interventions beyond CsA.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, a muscular disorder defined as "congenital pseudomyotonia" was described in Chianina cattle, one of the most important Italian cattle breeds for quality meat and leather. The clinical phenotype of this disease is characterized by an exercise-induced muscle contracture that prevents animals from performing muscular activities. On the basis of clinical symptoms, Chianina pseudomyotonia appeared related to human Brody's disease, a rare inherited disorder of skeletal muscle function that results from a sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1) deficiency caused by a defect in the ATP2A1 gene that encodes SERCA1. SERCA1 is involved in transporting calcium from the cytosol to the lumen of the sarcoplasmic reticulum. Recently, we identified the genetic defect underlying Chianina cattle pseudomyotonia. A missense mutation in exon 6 of the ATP2A1 gene, leading to an R164H substitution in the SERCA1 protein, was found. In this study, we provide biochemical evidence for a selective deficiency in SERCA1 protein levels in sarcoplasmic reticulum membranes from affected muscles, although mRNA levels are unaffected. The reduction of SERCA1 levels accounts for the reduced Ca(2+)-ATPase activity without any significant change in Ca(2+)-dependency. The loss of SERCA1 is not compensated for by the expression of the SERCA2 isoform. We believe that Chianina cattle pseudomyotonia might, therefore, be the true counterpart of human Brody's disease, and that bovine species might be used as a suitable animal model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

REASONS FOR PERFORMING STUDY: Airway mucus accumulation is associated with indoor irritant and allergen exposure in horses with recurrent airway obstruction (RAO). Epidermal growth factor receptor (EGFR) and a chloride channel (calcium activated, family member 1; CLCA1) are key signalling molecules involved in mucin gene expression. OBJECTIVES: We hypothesised that exposure to irritants and aeroallergens would lead to increased expression of the mucin gene eqMUC5AC and increased stored mucosubstance in the airways of RAO-affected horses, associated with increased neutrophils and CLCA1 and EGFR mRNA levels. METHODS: We performed quantitative RT-PCR of eqMUC5AC, CLCA1 and EGFR; volume density measurements of intraepithelial mucosubstances; and cytological differentiation of intraluminal inflammatory cells in small cartilaginous airways from cranial left and right and caudal left and right lung lobes of 5 clinically healthy and 5 RAO-affected horses that had been exposed to indoor stable environment for 5 days before euthanasia. RESULTS: Neutrophils were increased in RAO-affected horses compared to clinically healthy controls. EqMUC5AC mRNA levels were positively correlated with both CLCA1 and EGFR mRNA levels in RAO-affected horses but only with CLCA1 in controls. The relationship between eqMUC5AC and CLCA1 differed in the 2 groups of horses with RAO-affected animals overexpressing CLCA1 in relation to eqMUC5AC. CONCLUSIONS: These data implicate CLCA1 as a signalling molecule in the expression of eqMUC5AC in horses but also suggest differential regulation by CLCA1 and EGFR between horses with RAO and those with milder degrees of airway inflammation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Notch is an intercellular signaling pathway related mainly to sprouting neo-angiogenesis. The objective of our study was to evaluate the angiogenic mechanisms involved in the vascular augmentation (sprouting/intussusception) after Notch inhibition within perfused vascular beds using the chick area vasculosa and MxCreNotch1(lox/lox) mice. In vivo monitoring combined with morphological investigations demonstrated that inhibition of Notch signaling within perfused vascular beds remarkably induced intussusceptive angiogenesis (IA) with resultant dense immature capillary plexuses. The latter were characterized by 40 % increase in vascular density, pericyte detachment, enhanced vessel permeability, as well as recruitment and extravasation of mononuclear cells into the incipient transluminal pillars (quintessence of IA). Combination of Notch inhibition with injection of bone marrow-derived mononuclear cells dramatically enhanced IA with 80 % increase in vascular density and pillar number augmentation by 420 %. Additionally, there was down-regulation of ephrinB2 mRNA levels consequent to Notch inhibition. Inhibition of ephrinB2 or EphB4 signaling induced some pericyte detachment and resulted in up-regulation of VEGFRs but with neither an angiogenic response nor recruitment of mononuclear cells. Notably, Tie-2 receptor was down-regulated, and the chemotactic factors SDF-1/CXCR4 were up-regulated only due to the Notch inhibition. Disruption of Notch signaling at the fronts of developing vessels generally results in massive sprouting. On the contrary, in the already existing vascular beds, down-regulation of Notch signaling triggered rapid augmentation of the vasculature predominantly by IA. Notch inhibition disturbed vessel stability and led to pericyte detachment followed by extravasation of mononuclear cells. The mononuclear cells contributed to formation of transluminal pillars with sustained IA resulting in a dense vascular plexus without concomitant vascular remodeling and maturation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES The dental follicle plays an important role in tooth eruption by providing key regulators of osteogenesis and bone resorption. Patients with cleidocranial dysplasia (CCD) exhibit delayed tooth eruption in combination with increased bone density in the maxilla and mandible, suggesting disturbances in bone remodeling. The aim of this study was to determine the expression of genes relevant for tooth eruption and bone remodeling in the dental follicles of patients with CCD and normal subjects. MATERIAL AND METHODS Thirteen dental follicles were isolated from five unrelated patients with CCD, and fourteen dental follicles were obtained from 10 healthy individuals. All teeth were in the intraosseous phase of eruption. The expression of RANK, RANKL, OPG, and CSF-1 was determined by quantitative RT-PCR. RESULTS In patients with CCD, the mRNA levels of RANK, OPG, and CSF-1 were significantly elevated compared with the control group. Accordingly, the ratios of RANKL/OPG and RANKL/RANK mRNAs were significantly decreased in patients with CCD. CONCLUSION The observed alterations in the expression and ratios of the aforementioned factors in the dental follicle of CCD individuals suggest a disturbed paracrine signaling for bone remodeling that could be responsible for the impaired tooth eruption seen in these patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To examine the behavior of the estrogenic biomarker vitellogenin (VTG) under the combined impact of estrogens and pathogens, parasite-infected or noninfected rainbow trout were exposed to two doses of 17beta-estradiol (E2). Infected and E2-exposed fish showed significantly lower hepatic VTG mRNA levels than healthy fish. Transcriptome data suggest that this was due to energetic constraints. Reduced responsiveness of the VTG biomarker in parasitized fish might obscure detection of low-level field exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES The aim of this study was to assess gingival fluid (GCF) cytokine messenger RNA (mRNA) levels, subgingival bacteria, and clinical periodontal conditions during a normal pregnancy to postpartum. MATERIALS AND METHODS Subgingival bacterial samples were analyzed with the checkerboard DNA-DNA hybridization method. GCF samples were assessed with real-time PCR including five proinflammatory cytokines and secretory leukocyte protease inhibitor. RESULTS Nineteen pregnant women with a mean age of 32 years (S.D. ± 4 years, range 26-42) participated in the study. Full-mouth bleeding scores (BOP) decreased from an average of 41.2% (S.D. ± 18.6%) at the 12th week of pregnancy to 26.6% (S.D. ± 14.4%) at the 4-6 weeks postpartum (p < 0.001). Between week 12 and 4-6 weeks postpartum, the mean probing pocket depth changed from 2.4 mm (S.D. ± 0.4) to 2.3 mm (S.D. ± 0.3) (p = 0.34). Higher counts of Eubacterium saburreum, Parvimonas micra, Selenomonas noxia, and Staphylococcus aureus were found at week 12 of pregnancy than at the 4-6 weeks postpartum examinations (p < 0.001). During and after pregnancy, statistically significant correlations between BOP scores and bacterial counts were observed. BOP scores and GCF levels of selected cytokines were not related to each other and no differences in GCF levels of the cytokines were observed between samples from the 12th week of pregnancy to 4-6 weeks postpartum. Decreasing postpartum counts of Porphyromonas endodontalis and Pseudomonas aeruginosa were associated with decreasing levels of Il-8 and Il-1β. CONCLUSIONS BOP decreased after pregnancy without any active periodontal therapy. Associations between bacterial counts and cytokine levels varied greatly in pregnant women with gingivitis and a normal pregnancy outcome. Postpartum associations between GCF cytokines and bacterial counts were more consistent. CLINICAL RELEVANCE Combined assessments of gingival fluid cytokines and subgingival bacteria may provide important information on host response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.