960 resultados para Geographic Range
Resumo:
O atual nível das mudanças uso do solo causa impactos nas mudanças ambientais globais. Os processos de mudanças do uso e cobertura do solo são processos complexos e não acontecem ao acaso sobre uma região. Geralmente estas mudanças são determinadas localmente, regionalmente ou globalmente por fatores geográficos, ambientais, sociais, econômicos e políticos interagindo em diversas escalas temporais e espaciais. Parte desta complexidade é capturada por modelos de simulação de mudanças do uso e cobertura do solo. Uma etapa do processo de simulação do modelo CLUE-S é a quantificação da influência local dos impulsores de mudança sobre a probabilidade de ocorrência de uma classe de uso do solo. Esta influência local é obtida ajustando um modelo de regressão logística. Um modelo de regressão espacial é proposto como alternativa para selecionar os impulsores de mudanças. Este modelo incorpora a informação da vizinhança espacial existente nos dados que não é considerada na regressão logística. Baseado em um cenário de tendência linear para a demanda agregada do uso do solo, simulações da mudança do uso do solo para a microbacia do Coxim, Mato Grosso do Sul, foram geradas, comparadas e analisadas usando o modelo CLUE-S sob os enfoques da regressão logística e espacial para o período de 2001 a 2011. Ambos os enfoques apresentaram simulações com muito boa concordância, medidas de acurácia global e Kappa altos, com o uso do solo para o ano de referência de 2004. A diferença entre os enfoques foi observada na distribuição espacial da simulação do uso do solo para o ano 2011, sendo o enfoque da regressão espacial que teve a simulação com menor discrepância com a demanda do uso do solo para esse ano.
Resumo:
Seasonal trawling was conducted randomly in coastal (depths of 4.6–17 m) waters from St. Augustine, Florida, (29.9°N) to Winyah Bay, South Carolina (33.1°N), during 2000–03, 2008–09, and 2011 to assess annual trends in the relative abundance of sea turtles. A total of 1262 loggerhead sea turtles (Caretta caretta) were captured in 23% (951) of 4207 sampling events. Capture rates (overall and among prevalent 5-cm size classes) were analyzed through the use of a generalized linear model with log link function for the 4097 events that had complete observations for all 25 model parameters. Final models explained 6.6% (70.1–75.0 cm minimum straight-line carapace length [SCLmin]) to 14.9% (75.1–80.0 cm SCLmin) of deviance in the data set. Sampling year, geographic subregion, and distance from shore were retained as significant terms in all final models, and these terms collectively accounted for 6.2% of overall model deviance (range: 4.5–11.7% of variance among 5-cm size classes). We retained 18 parameters only in a subset of final models: 4 as exclusively significant terms, 5 as a mixture of significant or nonsignificant terms, and 9 as exclusively nonsignificant terms. Four parameters also were dropped completely from all final models. The generalized linear model proved appropriate for monitoring trends for this data set that was laden with zero values for catches and was compiled for a globally protected species. Because we could not account for much model deviance, metrics other than those examined in our study may better explain catch variability and, once elucidated, their inclusion in the generalized linear model should improve model fits.
Resumo:
Black Sea Bass (Centropristis striata) in the mid-Atlantic Bight undertake seasonal cross-shelf movements to occupy inshore rocky reefs and hardbottom habitats between spring and fall. Shelf-wide migrations of this stock are well documented, but movements and home ranges of fish during their inshore residency period have not been described. We tagged 122 Black Sea Bass with acoustic transmitters at a mid-Atlantic reef to estimate home-range size and factors that influence movements (>400 m) at a 46.1-km2 study site between May and November 2003. Activity of Black Sea Bass was greatest and most consistent during summer but declined rapidly in September as water temperatures at the bottom of the seafloor increased on the inner shelf. Black Sea Bass maintained relatively large home ranges that were fish-size invariant but highly variable (13.7–736.4 ha), underscoring the importance of large sample sizes in examination of population-level characteristics of mobile species with complex social interactions. On the basis of observed variations in movement patterns and the size of home ranges, we postulate the existence of groups of conspecifics that exhibit similar space-use behaviors. The group of males released earlier in the tagging period used larger home ranges than the group of males released later in our study. In addition, mean activity levels and the probability of movement among acoustic stations varied among groups of fish in a complex manner that depended on sex. These differences in movement behaviors may increase the vulnerability of male fish to passive fishing gears, further exacerbating variation in exploitation rates for this species among reefs.