986 resultados para Generative organs
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
The mechanisms of the systemic response associated with talc-induced pleurodesis are poorly understood. The aim of this study was to assess the acute inflammatory response and migration of talc of small. size particles injected in the pleural space. Rabbits were injected intrapleurally with talc solution containing small. or mixed particles and blood and pleural fluid samples were collected after 6, 24 or 48 h and assayed for leukocytes, neutrophils, lactate dehydrogenase, IL-8, VEGF, and TGF-beta. The lungs, spleen, liver and kidneys were assessed to study deposit of talc particles. Both types of talc produced an acute serum inflammatory response, more pronounced in the small particles group. Pleural fluid IL-8 and VEGF levels were higher in the small particle talc group. Correlation between pleural VEFG and TGF-beta levels was observed for both groups. Although talc particles were demonstrated in the organs of both groups, they were more pronounced in the small talc group. In conclusion, intrapleural injection of talc of small size particles produced a more pronounced acute systemic response and a greater deposition in organs than talc of mixed particles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Acidosis is a common and deleterious aspect of maintenance dialysis. Traditionally, it is considered to be an elevated anion gap acidosis caused by the inability to excrete nonvolatile anions. Stewart`s approach made it possible to identify real determinants of the acid-base status and allowed quantification of the components of these disturbances, especially the unmeasured anions. We performed a cross-sectional study to identify and quantify each component of acidosis in hemodialysis maintenance patients. Sixty-four maintenance hemodialysis patients and 14 controls were enrolled in this study. Gasometrical and biochemical analysis were performed before the midweek dialysis session. Quantitative physicochemical analysis was carried out using the Stewart methodology. Hemodialysis patients were found to have mild acidemia (mean pH: 7.33 +/- 0.06 versus 7.41 +/- 0.05) secondary to metabolic acidosis (serum bicarbonate: 18.8 +/- 0.26 versus 25.2 +/- 0.48 mEq/l). The metabolic acidosis was due to retention of unmeasured anions (6.5 +/- 0.29 versus 3.1 +/- 0.62 mEq/l), hyperchloremia (105.1 +/- 0.5 versus 101.8 +/- 0.7 mEq/l), and hyperphosphatemia (5.90 +/- 0.19 versus 3.66 +/- 0.14 mg/dl). Compared with control values, the unmeasured anions and hyperchloremia had a similar acidifying effect (3.4 and 3.3 mEq/l), corresponding to almost 90% of the metabolic acidosis. Unmeasured anions and hyperchloremia are important components of acidosis in maintenance hemodialysis, in addition to phosphorus. Future studies to determine the etiology and consequences of hyperchloremic acidosis are warranted.
Resumo:
This article aims at investigating in vivo evaluation of lyophilization procedure on the biocompatibility of bovine pericardium treated with glutaraldehyde (GA). The bovine pericardium was fixed with 0.5% glutaraldehyde during 10 days and preserved in 4% formaldehyde (FA). Two groups of samples were prepared from treated membranes: Group 1, nonlyophilized samples and Group 2, lyophilized samples. Male Sprague-Dawley rats (4 weeks after birth) were anesthetized (pentobarbital sodium 25 mg/kg of body weight) and in each one were implanted subcutaneously in the dorsal region a sample from Group 1 and another from Group 2. These samples were explanted after 30 days for histological analysis. No intercurrences took place after the surgery. No differences (P > 0.05) in the calcification, granulomatous reaction, mononuclear infiltration, and granulation tissue development was observed between both groups. The implanted lyophilized samples presented a trend for a reduced inflammatory reaction. Lyophilization of the bovine pericardium does not seem to increase the above listed tissue reaction.
Resumo:
Bovine pericardium is a widely utilized biomaterial. Usually, after harvesting, it is advantageous that the pericardium be immersed in glycerol to improve its shelf life. This can induce some degree of toxicity in the material. The studies were performed in compliance with the rules of ISO 10993 and OECD 487, in the biological evaluation of medical devices. The material was prepared without previous washing. After sterilization by gamma radiation the pericardium was immersed in RPMI 1640 culture medium to fulfill the extraction condition. The same extract was employed in the cytotoxic and genotoxic tests. The procedures were carried out with Chinese hamster ovary cell line and to determine the cytotoxicity, a colorimetric method with the tetrazolium compound MTS was used. For the genotoxicity, following the in vitro micronucleus assay, the test was developed with and without metabolic activation. The Cytotoxicity Index was graphically estimated at the extract concentration of 78%. In the genotoxicity test, the average value of cell proliferation index was found to be 1.62 +/- 0.02 with S9 metabolic activator and 1.91 +/- 0.01 without S9 metabolic activator. Both values are similar to the negative control value in the micronucleus assay. We observed that although the pericardium preserved in glycerol shows a certain level of cytotoxicity, it does not show any genotoxicity.
Resumo:
Selection criteria for lung donation were based on initial experiences with lung transplantation without further studies to improve them, thereby guaranting the best use of donated organs. A definition of an extended criteria donor is therefore required to obtain more lungs to meet the demands of patients awaiting transplantation. Studies have been reviewed for the impact on survival and morbidity of age ranges, oxygen fraction, cause of death, smoking habits, x-ray findings, infection, hepatitis serology and non-heart-beating status, seeking to support physicians to make decisions regarding the use of marginal organs.
Resumo:
Eukaryotic translation initiation factor 5A (eIF5A) has a unique character: the presence of an unusual amino acid, hypusine, which is formed by post-translational modifications. Even before the identification of hypusination in eIF5A, the correlation between hypusine formation and protein synthesis, shifting cell proliferation rates, had already been observed. Embryogenesis is a complex process in which cellular proliferation and differentiation are intense. In spite of the fact that many studies have described possible functions for eIF5A, its precise role is under investigation, and to date nothing has been reported about its participation in embryonic development. In this study we show that eIF5A is expressed at all mouse embryonic post-implantation stages with increase in eIF5A mRNA and protein expression levels between embryonic days E10.5 and E13.5. Immunohistochemistry revealed the ubiquitous presence of eIF5A in embryonic tissues and organs at E13.5 day. Interestingly, stronger immunoreactivity to eIF5A was observed in the stomodeum, liver, ectoderm, heart, and eye, and the central nervous system; regions which are known to undergo active differentiation at this stage, suggesting a role of eIF5A in differentiation events. Expression analyses of MyoD, a myogenic transcription factor, revealed a significantly higher expression from day E12.5 on, both at the mRNA and the protein levels suggesting a possible correlation to eIF5A. Accordingly, we next evidenced that inhibiting eIF5A hypusination in mouse myoblast C2C12 cells impairs their differentiation into myotubes and decreases MyoD transcript levels. Those results point to a new functional role for eIF5A, relating it to embryogenesis, development, and cell differentiation. J. Cell. Physiol. 225: 500-505, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: A DNA vaccine (pVAXhsp65) containing the gene of a heat-shock protein (hsp65) from Mycobacterium leprae showed high immunogenicity and protective efficacy against tuberculosis in BALB/c mice. A possible deleterious effect related to autoimmunity needed to be tested because hsp65 is highly homologous to the correspondent mammalian protein. In this investigation we tested the effect of a previous immunization with DNAhsp65 in the development of experimental autoimmune encephalomyelitis (EAE), a rat model of multiple sclerosis. Methods: Female Lewis rats were immunized with 3 pVAXhsp65 doses by intramuscular route. Fifteen days after the last DNA dose the animals were evaluated for specific immunity or submitted to induction of EAE. Animals were evaluated daily for weight loss and clinical score, and euthanized during the recovery phase to assess the immune response and inflammatory infiltration at the central nervous system. Results: Immunization with pVAXhsp65 induced a specific immune response characterized by production of IgG(2b) anti-hsp65 antibodies and IFN-gamma secretion. Previous immunization with pVAXhsp65 did not change EAE clinical manifestations (weight and clinical score). However, the vaccine clearly decreased brain and lumbar spinal cord inflammation. In addition, it downmodulated IFN-gamma and IL-10 production by peripheral lymphoid organs. Conclusion: Our data demonstrated that this vaccine does not trigger a deleterious effect on EAE development and also points to a potential protective effect. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Chemokines comprise a structurally related family of cytokines that regulate leukocyte trafficking. Because infection with Toxoplasma gondii can induce an important inflammatory reaction that, if left uncontrolled, can lead to death, we investigated the role of the chemokine receptor CCR2 in T gondii infection. We orally infected CCR2(-/-) mice with five ME-49 T gondii cysts and monitored morbidity, survival, and immune response thereafter. The CCR2(-/-) mice displayed higher susceptibility to infection as all mice died on day 28 after infection. Despite similar Th1 responses, a more evident anti-inflammatory response was induced in the peripheral organs of CCR2(-/-) mice compared with wild-type C57BL/6 mice. Additionally, CCR2-/- mice presented greater parasitism and a milder inflammatory reaction in their peripheral organs with lesser CD4(+) and MAC-1(+) and greater CD8(+) cell migration. The parasite load decreased in these organs in CCR2(-/-) mice but remained uncontrolled in the central nervous system. Additionally, we observed down-regulated inducible nitric oxide synthase expression in peripheral organs from CCR2(-/-) mice that was associated with a small nitric oxide production by spleen macrophages. In conclusion, in the absence of CCR2, another mechanism is activated to control tissue parasitism in peripheral organs. Nevertheless, CCR2 is essential for the activation of microbicidal mediators that control T gondii replication in the central nervous system.