995 resultados para Gaussian Fields
Resumo:
The axial intensity distribution and focal depth of an apoclized focusing optical system are theoretically investigated with two kinds of incident light fields: a uniform-intensity-distribution beam and a Gaussian beam. Both a low-numerical-aperture and a high-numerical-aperture optical system are considered. Numerical results show that the depth of focus can be adjusted by changing the geometrical parameters and transmissivity of the apodizer in the focusing optical system. When a Gaussian beam is employed as the incident beam, the waist width also affects the depth of focus. The tunable range of the focal depth is very considerable. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The axial intensity distribution and focal depth of an apoclized focusing optical system are theoretically investigated with two kinds of incident light fields: a uniform-intensity-distribution beam and a Gaussian beam. Both a low-numerical-aperture and a high-numerical-aperture optical system are considered. Numerical results show that the depth of focus can be adjusted by changing the geometrical parameters and transmissivity of the apodizer in the focusing optical system. When a Gaussian beam is employed as the incident beam, the waist width also affects the depth of focus. The tunable range of the focal depth is very considerable. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The effect of an apodizer with two parallel taper refractive surfaces is theoretically investigated for high-density optical storage. The apodizer may modulate an incident Gaussian beam into an annular beam. Simulation shows that with the increasing inner radius of the modulated beam, the focal spot shrinks obviously. The depolarization effect gets strong simultaneously, which induces the circular symmetry loss of the focal spot. In this process, pattern density of the orthogonal and longitudinal diffractive fields increases remarkably.
Resumo:
Super-resolution filters based on a Gaussian beam are proposed to reduce the focusing spot in optical data storage systems. Both of amplitude filters and pure-phase filters are designed respectively to gain the desired intensity distributions. Their performances are analysed and compared with those based on plane wave in detail. The energy utilizations are presented. The simulation results show that our designed super-resolution filters are favourable for use in optical data storage systems in terms of performance and energy utilization.
Resumo:
The general superresolution theories for uniform amplitude beams and intercepted Gaussian beams are investigated. For these two types of incident beam, both two-zone amplitude and pure-phase filters are adopted to provide specific numerical descriptions of their differences in superresolution performances. Simulated results of comparisons between their performances indicate that, with the same spot size ratio, the intercepted Gaussian beam achieves a higher central image brightness ratio and significantly lower side-lobe effect irrespective of the filter used. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
Resumo:
On the basis of diffraction integral and the expansion of the hard-aperture function into a finite series of complex Gaussian functions, an approximate expression for spatially fully coherent polychromatic hollow Gaussian beams passing through aperture lens is obtained. Detailed numerical results indicate that remarkable spectral changes always occurs near the points where the field amplitude has zero value. The effects of truncation parameter, Fresnel number and the beam order on spectral shifts and spectral switches are investigated numerically. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The analytical vectorial structure of HGB is investigated in the far field based on the vector plane wave spectrum and the method of stationary phase. The energy flux distributions of HGB in the far-field, which is composed of TE term and TM term, are demonstrated. The physics pictures of HGB is illustrated from the vectorial structure, which is important to understand the theoretical aspects of both scalar and vector HGB propagation. (c) 2008 Optical Society of America.
Resumo:
The GPML toolbox provides a wide range of functionality for Gaussian process (GP) inference and prediction. GPs are specified by mean and covariance functions; we offer a library of simple mean and covariance functions and mechanisms to compose more complex ones. Several likelihood functions are supported including Gaussian and heavy-tailed for regression as well as others suitable for classification. Finally, a range of inference methods is provided, including exact and variational inference, Expectation Propagation, and Laplace’s method dealing with non-Gaussian likelihoods and FITC for dealing with large regression tasks.