971 resultados para Gas exchange


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ortho, meta and para anions of methyl benzoate may be made in the source of a mass spectrometer by the S(N)2(Si) reactions between HO- and methyl (o-, m-, and p-trimethylsilyl)benzoate respectively. All three anions lose CO upon collisional activation to form the ortho anion of anisole in the ratio ortho>>meta > para. The rearrangement process is charge directed through the ortho anion. Theoretical calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that the conversion of the meta and para anions to the ortho anion prior to loss of CO involve 1,2-H transfer(s), rather than carbon scrambling of the methoxycarbonylphenyl anion. There are two mechanisms which can account for this rearrangement, viz. (A) cyclisation of the ortho anion centre to the carbonyl group of the ester to give a cyclic carbonyl system in which the incipient methoxide anion substitutes at one of the two equivalent ring carbons of the three membered ring to yield an intermediate which loses CO to give the ortho anion of anisole, and (B) an elimination reaction to give an intermediate benzyne-methoxycarbonyl anion complex in which the MeOCO- species acts as a MeO- donor, which then adds to benzyne to yield the ortho anion of anisole. Calculations at the B3LYP/6-311++G(d,p)//HF/6-31+G(d) level of theory indicate that (i) the barrier in the first step (the rate determining step) of process A is 87 kJ mol(-1) less than that for the synchronous benzyne process B, and (ii) there are more low frequency vibrations in the transition state for benzyne process B than for the corresponding transition state for process A. Stepwise process A has the lower barrier for the rate determining step, and the lower Arrhenius factor: we cannot differentiate between these two mechanisms on available evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generic approach towards tailoring of ion species composition in reactive plasmas used for nanofabrication of various functional nanofilms and nanoassemblies, based on a simplified model of a parallel-plate rf discharge, is proposed. The model includes an idealized reactive plasma containing two neutral and two ionic species interacting via charge exchange collisions in the presence of a microdispersed solid component. It is shown that the number densities of the desired ionic species can be efficiently managed by adjusting the dilution of the working gas in a buffer gas, rates of electron impact ionization, losses of plasma species on the discharge walls, and surfaces of fine particles, charge exchange rates, and efficiency of three-body recombination processes in the plasma bulk. The results are relevant to the plasma-aided nanomanufacturing of ordered patterns of carbon nanotip and nanopyramid microemitters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Common to many types of water and wastewater is the presence of sodium ions which can be removed by desalination technologies, such as reverse osmosis and ion exchange. The focus of this investigation was ion exchange as it potentially offered several advantages compared to competing methods. The equilibrium and column behaviour of a strong acid cation (SAC) resin was examined for the removal of sodium ions from aqueous sodium chloride solutions of varying normality as well as a coal seam gas water sample. The influence of the bottle-point method to generate the sorption isotherms was evaluated and data interpreted with the Langmuir Vageler, Competitive Langmuir, Freundlich, and Dubinin-Astakhov models. With the constant concentration bottle point method, the predicted maximum exchange levels of sodium ions on the resin ranged from 61.7 to 67.5 g Na/kg resin. The general trend was that the lower the initial concentration of sodium ions in the solution, the lower the maximum capacity of the resin for sodium ions. In contrast, the constant mass bottle point method was found to be problematic in that the isotherm profiles may not be complete, if experimental parameters were not chosen carefully. Column studies supported the observations of the equilibrium studies, with maximum sodium loading of ca. 62.9 g Na/kg resin measured, which was in excellent agreement with the predictions of the data from the constant concentration bottle point method. Equilibria involving coal seam gas water were more complex due to the presence of sodium bicarbonate in solution, albeit the maximum loading capacity for sodium ions was in agreement with the results from the more simple sodium chloride solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report documents showcases my learning experiences and design of Green Falcon Solar Powered UAV. Only responsible aspects will be discussed inside this report. Using solar power that is captured by solar panels it can fly all day and also store power for night flying. Its major advantage lies in the fact that it is simple and versatile, which makes it applicable to a large range of UAVs of different wingspans. Green Falcon UAV is designed as a supporting tool for scientists to get a deeper understanding of gases exchange amongst ground plane and atmosphere

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal seam gas (CSG) is a growing industry in Queensland and represents a potential major employer and deliverer of financial prosperity for years to come. CSG is a natural gas composed primarily of methane and is found trapped underground in coal beds. During the gas extraction process, significant volumes of associated water are also produced. This associated water could be a valuable resource, however, the associated water comprises of various salt constituents that make it problematic for beneficial use. Consequently, there is a need to implement various water treatment strategies to purify the associated water to comply with Queenslands strict guidelines and to mitigate environmental risks. The resultant brine is also of importance as ultimately it also has to be dealt with in an economical manner. In some ways it can be considered that the CSG industry does not face a water problem, as this has inherent value to society, but rather has a salt issue to solve. This study analyzes the options involved in both the water treatment and salt recovery processes. A brief overview of the constituents present in Queensland CS water is made to illustrate the challenges involved and a range of treatment technologies discussed. Water treatment technologies examined include clarification (ballasted flocculation, dissolved air flotation, electrocoagulation), membrane filtration (ultrafiltration), ion exchange softening and desalination (ion exchange, reverse osmosis desalination and capacitance deionization). In terms of brine management we highlighted reinjection, brine concentration ponds, membrane techniques (membrane distillation, forward osmosis), thermal methods, electrodialysis, electrodialysis reversal, bipolar membrane electrodialysis, wind assisted intensive evaporation, membrane crystallization, eutectic freeze crystallization and vapor compression. As an entirety this investigation is designed to be an important tool in developing CS water treatment management strategies for effective management in Queensland and worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrous oxide is the foremost greenhouse gas (GHG)generated by land-applied manures and chemical fertilisers (Australian Government 2013). This research project was part of the National Agricultural Manure Management Program and investigated the potential for sorbers (i.e. specific naturally-occurring minerals) to decrease GHG emissions from spent piggery litter (as well as other manures)applied to soils. The sorbers investigated in this research were vermiculite and bentonite. Both are clays with high cation exchange capacities, of approximately 100150 cmol/kg Faure 1998). The hypothesis tested in this study was that the sorbers bind ammonium in soil solution thereby suppressing ammonia (NH3)volatilisation and in doing so, slowing the kinetics of nitrate formation and associated nitrous oxide (N2O) emissions. A series of laboratory, glasshouse and field experiments were conducted to assess the sorbers effectiveness. The laboratory experiments comprised 64 vessels containing manure and sorber/manure ratios ranging from 1 : 10 to 1 : 1 incorporated into a sandy Sodosol via mixing. The glasshouse trial involved 240 pots comprising manure/sorber incubations placed 5 cm below the soil surface, two soil types (sandy Sodosol and Ferrosol) and two different nitrogen (N) application rates (50 kg N/ha and 150 kg N/ha) with a model plant (kikuyu grass). The field trial consisted of 96, 2 m 2 m plots on a Ferrosol site with digit grass used as a model plant. Manure/ sorber mixtures were applied in trenches (5 cm below surface) to these plots at increasing sorber levels at anNloading rate of 200 kg/ha. Gas produced in all experiments was plumbed into a purpose-built automated gas analysis (N2O, NH3, CH4, CO2) system. In the laboratory experiments, the sorbers showed strong capacity to decreaseNH3 emissions (up to 80% decrease). Ammonia emissions were close to the detection limit in all treatments in the glasshouse and field trial. In all experiments, considerable N2O decreases (>40%) were achieved by the sorbers. As an example, mean N2O emission decreases from the field trial phase of the project are shown in Fig. 1a. The decrease inGHGemissions brought about by the clays did not negatively impact agronomic performance. Both vermiculite and bentonite resulted in a significant increase in dry matter yields in the field trial (Fig. 1b). Continuing work will optimise the sorber technology for improved environmental and agronomic performance across a range of soils (Vertosol, Dermosol in addition to Ferrosol and Sodosols) and environmental parameters (moisture, temperature, porosity, pH).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports an investigation of the ion exchange treatment of sodium chloride solutions in relation to use of resin technology for applications such as desalination of brackish water. In particular, a strong acid cation (SAC) resin (DOW Marathon C) was studied to determine its capacity for sodium uptake and to evaluate the fundamentals of the ion exchange process involved. Key questions to answer included: impact of resin identity; best models to simulate the kinetics and equilibrium exchange behaviour of sodium ions; difference between using linear least squares (LLS) and non-linear least squares (NLLS) methods for data interpretation; and, effect of changing the type of anion in solution which accompanied the sodium species. Kinetic studies suggested that the exchange process was best described by a pseudo first order rate expression based upon non-linear least squares analysis of the test data. Application of the Langmuir Vageler isotherm model was recommended as it allowed confirmation that experimental conditions were sufficient for maximum loading of sodium ions to occur. The Freundlich expression best fitted the equilibrium data when analysing the information by a NLLS approach. In contrast, LLS methods suggested that the Langmuir model was optimal for describing the equilibrium process. The Competitive Langmuir model which considered the stoichiometric nature of ion exchange process, estimated the maximum loading of sodium ions to be 64.7 g Na/kg resin. This latter value was comparable to sodium ion capacities for SAC resin published previously. Inherent discrepancies involved when using linearized versions of kinetic and isotherm equations were illustrated, and despite their widespread use, the value of this latter approach was questionable. The equilibrium behaviour of sodium ions form sodium fluoride solution revealed that the sodium ions were now more preferred by the resin compared to the situation with sodium chloride. The solution chemistry of hydrofluoric acid was suggested as promoting the affinity of the sodium ions to the resin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal seam gas production has resulted in the production of large volumes of associated water which contains dissolved salts dominated by sodium chloride and sodium bicarbonate. Ion exchange using synthetic resins has been proposed as a method for desalination of coal seam water to make it suitable for various beneficial reuse options. This study investigated the behaviour of solutions of sodium chloride and sodium bicarbonate with respect to exchange with Lanxess S108H strong acid cation (SAC) resin. Equilibrium isotherms were created for solutions of NaCl and NaHCO3 and an actual sample of coal seam water from the Surat Basin in southern Queensland. The exchange of sodium ions arising from sodium bicarbonate was found to be considerably more favourable than exchange of sodium ions from sodium chloride solutions. This latter behaviour was attributed to the secondary decomposition of bicarbonate species under acidic conditions which resulted in the evolution of carbon dioxide and formation of water. The isotherm profiles could not be satisfactorily fitted by a single isotherm model such as the Langmuir expression. Instead, two Langmuir equations had to be simultaneously applied in order to fit the sections of the isotherm attributable to sodium ion exchange from sodium bicarbonate and sodium chloride. The shape of the isotherm profile was dependent upon the ratio of sodium chloride to sodium bicarbonate in solution and there was a high degree of correlation between simulated and actual coal seam water solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal seam gas operations produce significant quantities of associated water which often require demineralization. Ion exchange with natural zeolites has been proposed as a possible approach. The interaction of natural zeolites with solutions of sodium chloride and sodium bicarbonate in addition to coal seam gas water is not clear. Hence, we investigated ion exchange kinetics, equilibrium, and column behaviour of an Australian natural zeolite. Kinetic tests suggested that the pseudo first order equation best simulated the data. Intraparticle diffusion was part of the rate limiting step and more than one diffusion process controlled the overall rate of sodium ion uptake. Using a constant mass of zeolite and variable concentration of either sodium chloride or sodium bicarbonate resulted in a convex isotherm which was fitted by a Langmuir model. However, using a variable mass of zeolite and constant concentration of sodium ions revealed that the exchange of sodium ions with the zeolite surface sites was in fact unfavourable. Sodium ion exchange from bicarbonate solutions (10.3 g Na/kg zeolite) was preferred relative to exchange from sodium chloride solutions (6.4 g Na/kg zeolite). The formation of calcium carbonate species was proposed to explain the observed behaviour. Column studies of coal seam gas water showed that natural zeolite had limited ability to reduce the concentration of sodium ions (loading 2.1 g Na/kg zeolite) with rapid breakthrough observed. It was concluded that natural zeolites may not be suitable for the removal of cations from coal seam gas water without improvement of their physical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse osmosis is the dominant technology utilized for desalination of saline water produced during the extraction of coal seam gas. Alternatively, ion exchange is of interest due to potential cost advantages. However, there is limited information regarding the column performance of strong acid cation resin for removal of sodium ions from both model and actual coal seam water samples. In particular, the impact of bed depth, flow rate, and regeneration was not clear. Consequently, this study applied Bed Depth Service Time (BDST) models to reveal that increasing sodium ion concentration and flow rates diminished the time required for breakthrough to occur. The loading of sodium ions on fresh resin was calculated to be ca. 71.1 g Na/kg resin. Difficulties in regeneration of the resin using hydrochloric acid solutions were discovered, with 86% recovery of exchange sites observed. The maximum concentration of sodium ions in the regenerant brine was found to be 47,400 mg/L under the conditions employed. The volume of regenerant waste formed was 6.2% of the total volume of water treated. A coal seam water sample was found to load the resin with only 53.5 g Na/kg resin, which was consistent with not only the co-presence of more favoured ions such as calcium, magnesium, barium and strontium, but also inefficient regeneration of the resin prior to the coal seam water test.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the exact solution to a one-dimensional multicomponent quantum lattice model interacting by an exchange operator which falls off as the inverse sinh square of the distance. This interaction contains a variable range as a parameter and can thus interpolate between the known solutions for the nearest-neighbor chain and the inverse-square chain. The energy, susceptibility, charge stiffness, and the dispersion relations for low-lying excitations are explicitly calculated for the absolute ground state, as a function of both the range of the interaction and the number of species of fermions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is the first report on the analysis of random block polysulfide copolymers containing different amounts of repeating units in the copolymer backbone, which has been studied by direct pyrolysis mass spectrometry (DPMS) and by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The homopolymers such as poly(ethylene sulfide) (PES), poly(styrene sulfide) (PSS), and two random copolymers, viz., poly(ethylene sulfide(x)-co-styrene sulfide(y)) [copolymer I (x = y = 0.5) and copolymer II (x = 0.74, y = 0.26)] were investigated by both DPMS and Py-GC/MS (except copolymer II) techniques. In the case of copolymer I, the thermal degradation products of SE1, SE2, S-2, and S2E (S = styrene sulfide, E = ethylene sulfide) were detected in DPMS, whereas the formation of SE1 and SE2 were observed by Py-GC/MS technique. However, for copolymer II, SE3 was also found along with SE1, SE2, S-2, and S2E in DPMS. The formation of additional product (SE3) observed in copolymer II could be due to an increase in the block length formed during copolymerization. Further, a comparative study on thermal degradation of PES, poly(ethylene disulfide) (PEDS), and poly(ethylene tetrasulfide) (PETS) were investigated by Py-GC/MS. The pyrolysis products detected by both DPMS and Py-GC/MS indicates that the thermal decomposition of these polymers yield cyclic sulfides through an intramolecular exchange or by backbiting processes. The linear products with thiol and vinyl groups were also observed by Py-GC/MS along with the cyclic products via carbon hydrogen transfer reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The compositions of the (Mn,Co)O solid solution with rock salt structure in equilibrium with (Mn,Co)Cr2O4 and (Mn,Co)Al2O4 spinel solid solutions have been determined by X-ray diffraction measurements at 1100 C and an oxygen partial pressure of 1010 atm. The ion exchange equilibria are quantitatively analysed, using values for activities in the (Mn,Co)O solid solution available in the literature, in order to obtain activities in the spinel solid solutions. The MnAl2O4-CoAl2O4 solid solution exhibits negative deviations from Raoult's law, consistent with the estimated cation disorder in the solid solution, while the MnCr2O4-CoCr2O4 solid solution shows slightly positive deviations. The difference in the Gibbs free energy of formation of the two pure chromites and aluminates derived from the results of this study are in good agreement with recent results obtained from solid oxide galvanic cells and gas-equilibrium techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 10-13 Nm-2 and sulfur potentials ranging from 0.19 10-2 Nm-2 to 33 10-2 Nm-2. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (P S 2 2.7 10-2 Nm-2) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfidation. At low sulfur potentials (P S 2 0.19 10-2 Nm-2) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases. Thermochemical diagrams for the Fe-Cr-S-O, Fe-Ni-S-O, Cr-Ni-S-O, and Si-Cr-S-O systems were constructed, and the experimental results are discussed in relation to these diagrams. Based on this comparison, reasonable corrosion mechanisms were developed. At high sulfur potentials, oxide and sulfide phases initially nucleate as separate islands. Overgrowth of the oxide by the sulfide occurs and an exchange reaction governs the corrosion process. Preoxidation at low oxygen potentials and 1150 K is beneficial in suppressing sulfidation at high sulfur potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EMF measurements were made with an electrochemical cell of the type ~t/&(s)/&+-beta alumina/Ag~S(s)S. 2(g). S(s or 1)/R at temperatures between 95 and 241C. Sflver $- alumina was prepared with the ion exchange technique. The patial pressure of diatomic gas obtained from cell voltages agreed with the literature data.