742 resultados para Game-based learning model
Resumo:
This dissertation includes two studies. Study 1 is a qualitative case study that describes enactment of the main components of a high fidelity Full-Day Early Learning Kindergarten (FDELK) classroom, specifically play-based learning and teacher-ECE collaboration. Study 2 is a quantitative analysis that investigates how effectively the FDELK program promotes school readiness skills, namely self-regulation, literacy, and numeracy, in Kindergarteners. To describe the main components of an FDELK classroom in Study 1, a sub-sample of four high fidelity case study schools were selected from a larger case study sample. Interview data from these schools’ administrators, educators, parents, and community stakeholders were used to describe how the main components of the FDELK program enabled educators to meet the individual needs of students and promote students’ SR development. In Study 2, hierarchical regression analyses of 32,207 students’ self-regulation, literacy, and numeracy outcomes using 2012 Ontario Early Development Instrument (EDI) data revealed essentially no benefit for students participating in the FDELK program when compared to peers in Half-Day or Alternate-Day Kindergarten programs. Being older and female predicted more positive SR and literacy outcomes. Age and gender accounted for limited variance in numeracy outcomes. Results from both studies suggest that the Ontario Ministry of Education should take steps to improve the quality of the FDELK program by incorporating evidence-based guidelines and goals for play, reducing Kindergarten class sizes to more effectively scaffold learning, and revising curriculum expectations to include a greater focus on SR, literacy, and numeracy skills.
Resumo:
La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.
Resumo:
Plasmodium falciparum infection during pregnancy leads to abortions, stillbirth, low birth weight, and maternal mortality. Infected erythrocytes (IEs) accumulate in the placenta by adhering to chondroitin sulfate A (CSA) via var2CSA protein exposed on the P. falciparum IE membrane. Plasmodium berghei IE infection in pregnant BALB/c mice is a model for severe placental malaria (PM). Here, we describe a transgenic P. berghei parasite expressing the full-length var2CSA extracellular region (domains DBL1X to DBL6ε) fused to a P. berghei exported protein (EMAP1) and characterize a var2CSA-based mouse model of PM. BALB/c mice were infected at midgestation with different doses of P. berghei-var2CSA (P. berghei-VAR) or P. berghei wild-type IEs. Infection with 10(4) P. berghei-VAR IEs induced a higher incidence of stillbirth and lower fetal weight than P. berghei At doses of 10(5) and 10(6) IEs, P. berghei-VAR-infected mice showed increased maternal mortality during pregnancy and fetal loss, respectively. Parasite loads in infected placentas were similar between parasite lines despite differences in maternal outcomes. Fetal weight loss normalized for parasitemia was higher in P. berghei-VAR-infected mice than in P. berghei-infected mice. In vitro assays showed that higher numbers of P. berghei-VAR IEs than P. berghei IEs adhered to placental tissue. Immunization of mice with P. berghei-VAR elicited IgG antibodies reactive to DBL1-6 recombinant protein, indicating that the topology of immunogenic epitopes is maintained between DBL1-6-EMAP1 on P. berghei-VAR and recombinant DBL1-6 (recDBL1-6). Our data suggested that impairments in pregnancy caused by P. berghei-VAR infection were attributable to var2CSA expression. This model provides a tool for preclinical evaluation of protection against PM induced by approaches that target var2CSA.
Resumo:
Electrical energy storage is a really important issue nowadays. As electricity is not easy to be directly stored, it can be stored in other forms and converted back to electricity when needed. As a consequence, storage technologies for electricity can be classified by the form of storage, and in particular we focus on electrochemical energy storage systems, better known as electrochemical batteries. Largely the more widespread batteries are the Lead-Acid ones, in the two main types known as flooded and valve-regulated. Batteries need to be present in many important applications such as in renewable energy systems and in motor vehicles. Consequently, in order to simulate these complex electrical systems, reliable battery models are needed. Although there exist some models developed by experts of chemistry, they are too complex and not expressed in terms of electrical networks. Thus, they are not convenient for a practical use by electrical engineers, who need to interface these models with other electrical systems models, usually described by means of electrical circuits. There are many techniques available in literature by which a battery can be modeled. Starting from the Thevenin based electrical model, it can be adapted to be more reliable for Lead-Acid battery type, with the addition of a parasitic reaction branch and a parallel network. The third-order formulation of this model can be chosen, being a trustworthy general-purpose model, characterized by a good ratio between accuracy and complexity. Considering the equivalent circuit network, all the useful equations describing the battery model are discussed, and then implemented one by one in Matlab/Simulink. The model has been finally validated, and then used to simulate the battery behaviour in different typical conditions.
Resumo:
La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.
Resumo:
The phenomenon of portfolio entrepreneurship has attracted considerable scholarly attention and is particularly relevant in the family fi rm context. However, there is a lack of knowledge of the process through which portfolio entrepreneurship develops in family firms. We address this gap by analyzing four in-depth, longitudinal family firm case studies from Europe and Latin America. Using a resource-based perspective, we identify six distinct resource categories that are relevant to the portfolio entrepreneurship process. Furthermore, we reveal that their importance varies across time. Our resulting resource-based process model of portfolio entrepreneurship in family firms makes valuable contributions to both theory and practice.
Resumo:
Includes bibliography.
Resumo:
As class contact times are reduced as a result of fiscal restraints in the modern tertiary sector, language instructors are placed in the position of having to find new ways to provide experience and continuity in language learning. Extending 'learning communities'—sites of learner knowledge exchange, exposure to diverse learning styles and strategies, and mutual support—beyond the classroom is one solution to maintaining successful linguistic competencies amongst learners. This, however, can conflict with the diverse extra-curricular commitments faced by tertiary students. The flexibility of web-based learning platforms provides one means of overcoming these obstacles. This study investigates learner perceptions of the use of the WebCT platform's computer medicated communication (CMC) tools as a means of extending the community of learning in tertiary Chinese language and non-language courses. Learner responses to Likert and open-ended questionnaires show that flexibility and reduction of negative affect are seen as significant benefits to 'virtual' interaction and communication, although responses are notably stronger in the non-language compared with the language cohort. While both learner cohorts acknowledge positive learning outcomes, CMC is not seen to consistently further interpersonal rapport beyond that established in the classroom. Maintaining a balance between web-based and classroom learning emerges as a concern, especially amongst language learners. [Author abstract, ed]
Resumo:
A structurally based viscosity model for fully liquid silicate slags has been proposed and applied to the Al2O3-CaO-'FeO'-SiO2 system at metallic iron saturation. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation structural units (SUs). The concentrations of structural units are equivalent to the second nearest neighbor bond concentrations calculated by the quasi-chemical thermodynamic model. This viscosity model describes experimental data over the entire temperature and composition range within the Al2O3-CaO-'FeO'-SiO2 system at metallic iron saturation and can be extended to other industrial slag systems.
Resumo:
An appreciation of the physical mechanisms which cause observed seismicity complexity is fundamental to the understanding of the temporal behaviour of faults and single slip events. Numerical simulation of fault slip can provide insights into fault processes by allowing exploration of parameter spaces which influence microscopic and macroscopic physics of processes which may lead towards an answer to those questions. Particle-based models such as the Lattice Solid Model have been used previously for the simulation of stick-slip dynamics of faults, although mainly in two dimensions. Recent increases in the power of computers and the ability to use the power of parallel computer systems have made it possible to extend particle-based fault simulations to three dimensions. In this paper a particle-based numerical model of a rough planar fault embedded between two elastic blocks in three dimensions is presented. A very simple friction law without any rate dependency and no spatial heterogeneity in the intrinsic coefficient of friction is used in the model. To simulate earthquake dynamics the model is sheared in a direction parallel to the fault plane with a constant velocity at the driving edges. Spontaneous slip occurs on the fault when the shear stress is large enough to overcome the frictional forces on the fault. Slip events with a wide range of event sizes are observed. Investigation of the temporal evolution and spatial distribution of slip during each event shows a high degree of variability between the events. In some of the larger events highly complex slip patterns are observed.
Resumo:
Allowing plant pathology students to tackle fictitious or real crop problems during the course of their formal training not only teaches them the diagnostic process, but also provides for a better understanding of disease etiology. Such a problem-solving approach can also engage, motivate, and enthuse students about plant pathologgy in general. This paper presents examples of three problem-based approaches to diagnostic training utilizing freely available software. The first provides an adventure-game simulation where Students are asked to provide a diagnosis and recommendation after exploring a hypothetical scenario or case. Guidance is given oil how to create these scenarios. The second approach involves students creating their own scenarios. The third uses a diagnostic template combined with reporting software to both guide and capture students' results and reflections during a real diagnostic assignment.
Resumo:
SQL (Structured Query Language) is one of the essential topics in foundation databases courses in higher education. Due to its apparent simple syntax, learning to use the full power of SQL can be a very difficult activity. In this paper, we introduce SQLator, which is a web-based interactive tool for learning SQL. SQLator's key function is the evaluate function, which allows a user to evaluate the correctness of his/her query formulation. The evaluate engine is based on complex heuristic algorithms. The tool also provides instructors the facility to create and populate database schemas with an associated pool of SQL queries. Currently it hosts two databases with a query pool of 300+ across the two databases. The pool is divided into 3 categories according to query complexity. The SQLator user can perform unlimited executions and evaluations on query formulations and/or view the solutions. The SQLator evaluate function has a high rate of success in evaluating the user's statement as correct (or incorrect) corresponding to the question. We will present in this paper, the basic architecture and functions of SQLator. We will further discuss the value of SQLator as an educational technology and report on educational outcomes based on studies conducted at the School of Information Technology and Electrical Engineering, The University of Queensland.
Resumo:
The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.
Resumo:
The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.
Resumo:
Lifelong learning is a ‘keystone’ of educational policies (Faure, 1972) where the emphasis on learning shifts from teacher to learner. Higher Education (HE) institutions should be committed to developing lifelong learning, that is promoting learning that is flexible, diverse and relevant at different times, and in different places, and is pursued throughout life. Therefore the HE sector needs to develop effective strategies to encourage engagement in meaningful learning for diverse student populations. The use of e-portfolios, as a ‘purposeful aggregation of digital items’ (Sutherland & Powell, 2007), can meet the needs of the student community by encouraging reflection, the recording of experiences and achievements, and personal development planning (PDP). The use of e-portfolios also promotes inclusivity in learning as it provides students with the opportunity to articulate their aspirations and take the first steps along the pathway of lifelong learning. However, ensuring the uptake of opportunities within their learning is more complex than the students simply having access to the software. Therefore it is argued here that crucial to the effective uptake and engagement of the e-portfolio is embedding it purposefully within the curriculum. In order to investigate effective implementation of e-portfolios an explanatory case study on their use was carried out, initially focusing on 3 groups of students engaged in work-based learning and professional practice. The 3 groups had e-Portfolios embedded and assessed at different levels. Group 1 did not have the e-Portfolio embedded into their curriculum nor was the e-Portfolio assessed. Group 2 had the e-Portfolio embedded into the curriculum and formatively assessed. Group 3 also had the e-Portfolio embedded into the curriculum and were summatively assessed. Results suggest that the use of e-Portfolios needs to be integral to curriculum design in modules rather than used as an additional tool. In addition to this more user engagement was found in group 2 where the e-Portfolio was formatively assessed only. The implications of this case study are further discussed in terms of curriculum development.