971 resultados para GOLGI-APPARATUS
Resumo:
The exchange of proteins and lipids between the trans-Golgi network (TGN) and the endosomal system requires multiple cellular machines, whose activities are coordinated in space and time to generate pleomorphic, tubulo-vesicular carriers that deliver their content to their target compartments. These machines and their associated protein networks are recruited and/or activated on specific membrane domains where they select proteins and lipids into carriers, contribute to deform/elongate and partition membrane domains using the mechanical forces generated by actin polymerization or movement along microtubules. The coordinated action of these protein networks contributes to regulate the dynamic state of multiple receptors recycling between the cell surface, endosomes and the TGN, to maintain cell homeostasis as exemplified by the biogenesis of lysosomes and related organelles, and to establish/maintain cell polarity. The dynamic assembly and disassembly of these protein networks mediating the exchange of membrane domains between the TGN and endosomes regulates cell-cell signalling and thus the development of multi-cellular organisms. Somatic mutations in single network components lead to changes in transport dynamics that may contribute to pathological modifications underlying several human diseases such as mental retardation.
Resumo:
Early endosome-to-trans-Golgi network (TGN) transport is organized by the retromer complex. Consisting of cargo-selective and membrane-bound subcomplexes, retromer coordinates sorting with membrane deformation and carrier formation. Here, we describe four mammalian retromers whose membrane-bound subcomplexes contain specific combinations of the sorting nexins (SNX), SNX1, SNX2, SNX5, and SNX6. We establish that retromer requires a dynamic spatial organization of the endosomal network, which is regulated through association of SNX5/SNX6 with the p150(glued) component of dynactin, an activator of the minus-end directed microtubule motor dynein; an association further defined through genetic studies in C. elegans. Finally, we also establish that the spatial organization of the retromer pathway is mediated through the association of SNX1 with the proposed TGN-localized tether Rab6-interacting protein-1. These interactions describe fundamental steps in retromer-mediated transport and establish that the spatial organization of the retromer network is a critical element required for efficient retromer-mediated sorting.
Resumo:
An apparatus was developed to project spinning golf balls directly onto golf greens. This employed a modified baseball/practice machine with two counter-rotating pneumatic wheels. The speed of the wheels could be varied independently allowing backspin to be given to the ball. The ball was projected into a darkened enclosure where the motion of the ball before and after impacting with the turf was recorded using a still camera and a stroboscope. The resulting photographs contained successive images of the ball on a single frame of film. The apparatus was tested on eighteen golf courses resulting in 721 photographs of impacts. Statistical analysis was carried out on the results of the photographs and from this, two types of green emerged. On the first, the ball tended to rebound with topspin, while on the second, the ball retained backspin after impact if the initial backspin was greater than about 350 rads-1. Eleven tests were devised to determine the characteristics of greens and statistical techniques were used to analyse the relationships between these tests. These showed the effects of the green characteristics on ball/turf impacts. It was found that the ball retained backspin on greens that were freely drained and had less than 60% of Poa annua (annual meadow grass) in their swards. Visco-elastic models were used to simulate the impact of the ball with the turf. Impacts were simulated by considering the ball to be rigid and the turf to be a two layered system consisting of springs and dampers. The model showed good agreement with experiment and was used to simulate impacts from two different shots onto two contrasting types of green.
Resumo:
The tethering factor p115 has been shown to facilitate Golgi biogenesis and membrane traffic in cells in culture. However, the role of p115 within an intact animal is largely unknown. Here, we document that RNAi-mediated depletion of p115 in C. elegans causes accumulation of the yolk protein (YP170) in body cavity and the retention of the yolk receptor RME-2 in the ER and the Golgi within oocytes.Structure-function analyses of p115 have identified two homology (H1-2) regions within the N-terminal globular head and the coiled-coil 1 (CC1) domain as essential for p115 function. We identify a novel C-terminal domain of p115 as necessary for Golgi ribbon formation and cargo trafficking. We show that p115 mutants lacking the fourth CC domain (CC4) act in a dominant negative manner to disrupt Golgi and prevent cargo trafficking in cells containing endogenous p115. Furthermore, using RNAi-mediated "replacement" strategy we show that CC4 is necessary for Golgi ribbon formation and membrane trafficking in cells depleted of endogenous p115.p115 has been shown to bind a subset of ER-Golgi SNAREs through CC1 and CC4 domains (Shorter et al., 2002). Our findings show that CC4 is required for p115 function and suggest that both the CC1 and the CC4 SNARE-binding motifs may participate in p115-mediated membrane tethering.
Resumo:
Conventional methods in horizontal drilling processes incorporate magnetic surveying techniques for determining the position and orientation of the bottom-hole assembly (BHA). Such means result in an increased weight of the drilling assembly, higher cost due to the use of non-magnetic collars necessary for the shielding of the magnetometers, and significant errors in the position of the drilling bit. A fiber-optic gyroscope (FOG) based inertial navigation system (INS) has been proposed as an alternative to magnetometer -based downhole surveying. The utilizing of a tactical-grade FOG based surveying system in the harsh downhole environment has been shown to be theoretically feasible, yielding a significant BHA position error reduction (less than 100m over a 2-h experiment). To limit the growing errors of the INS, an in-drilling alignment (IDA) method for the INS has been proposed. This article aims at describing a simple, pneumatics-based design of the IDA apparatus and its implementation downhole. A mathematical model of the setup is developed and tested with Bloodshed Dev-C++. The simulations demonstrate a simple, low cost and feasible IDA apparatus.
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".
Resumo:
The photochemistry of the polar regions of Earth, as well as the interstellar medium, is driven by the effect of ultraviolet radiation on ice surfaces and on the materials trapped within them. While the area of ice photochemistry is vast and much research has been completed, it has only recently been possible to study the dynamics of these processes on a microscopic level. One of the leading techniques for studying photoreaction dynamics is Velocity Map Imaging (VMI). This technique has been used extensively to study several types of reaction dynamics processes. Although the majority of these studies have utilized molecular beams as the main medium for reactants, new studies showed the versatility of the technique when applied to molecular dynamics of molecules adsorbed on metal surfaces. Herein the development of a velocity map imaging apparatus capable of studying the photochemistry of condensed phase materials is described. The apparatus is used to study of the photo-reactivity of NO2 condensed within argon matrices to illustrate its capabilities. A doped ice surface is formed by condensing Ar and NO2 gas onto a sapphire rod which is cooled using a helium compressor to 20 K. The matrix is irradiated using an Nd:YAG laser at 355 nm, and the resulting NO fragment is state-selectively ionized using an excimer-pumped dye laser. In all, we are able to detect transient photochemically generated species and can collect information on their quantum state and kinetic energy distribution. It is found that the REMPI spectra changes as different sections of the dissociating cloud are probed. The rotational and translational energy populations are found to be bimodal with a low temperature component roughly at the temperature of the matrix, and a second component with much higher temperature, the rotational temperature showing a possible population inversion, and the translational temperature of 100-200 K. The low temperature translational component is found to dominate at long delay times between dissociation and ionization, while at short time delays the high temperature component plays a larger role. The velocity map imaging technique allows for the detection of both the axial and radial components of the translational energy. The distribution of excess energy over the rotational, electronic and translational states of the NO photofragments provides evidence for collisional quenching of the fragments in the Ar-matrix prior to their desorption.
Resumo:
The famous althusserian concept “The ideological State apparatus” has the inconvenient of hiding what truly should have to be discussed: The Kind of State of which it is talking about. Mostly, avoids realizing the fact that the architecture of the modern State was thought of, precisely, as antidote against ideological control. The success and failures of this political project become then, very difficult to diagnose.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
In this study the conodont multielement apparatus of Late Devonian (Famennian) Icriodus altematus is described which has been reconstructed from clustered group findings and separated elements. This apparatus is markedly different from classical ozarkodinid apparatuses and needs further consideration of its functional morphology. Since bedding plane assemblages of Icriodus altematus are yet unknown, a spatial reconstruction of this apparatus and a feeding mechanism are proposed which are based on the oropharyngal apparatus of recent lampreys. Though the extant representatives of petromyzontoids are not close phylogenetic relatives of extinct conodonts, there exist intriguing analogies concerning the morphology of the tooth types and the presumed spatial distribution within the oral cavity of both taxa.
Resumo:
The literature on the determination of flammability limits was reviewed and experts on the ASTM E681 standard were interviewed to identify new means of improving the reproducibility of the ASTM E681 test. Venting was identified as a variable of flammability limits not yet addressed. Limitations of the current system for sealing and venting (a rubber stopper) were identified and addressed by the development of a custom burst disc. The burst disc was evaluated for its ability to hold and maintain a vacuum, its ability to vent at pressures of interest, and for its venting phenomena. The burst disc was deemed to be a satisfactory alternative to the rubber stopper and is recommended to be included in the ASTM E681 standard.
Resumo:
By investigating the inner working of leading financial institutions, and their dense interconnections, this thesis explores the evolution of traditional financial instruments like bonds to tackle sustainability issues. Building on fieldwork among green financiers, the thesis is based upon participant observation of working groups appointed to define standards for sustainable bonds. Engaging critical theory, one claim is that investors are increasingly recruited or interpellated by an emerging global green ideological apparatus, aimed at ensuring the reproduction of existing social relations. Taking stock of the proliferation of both public and private actors in the definition of green standards and practices, the thesis proposes that this green ideology is becoming hegemonic. Focusing on the case of green bond pricing, it suggests that environmental and climate labels and other financial green signifiers for financial products take on brand-like qualities. Crystallizing imaginaries, meanings, and forms of personhood, they play a fundamental role in what is defined as a dual process of valuation-cum-subjectivation. Identifying themselves as “green”, financiers valuate differently green and brown assets allowing a ‘green’ financial value to slowly come to matter. Yet, alongside their ideological role, green labels have come to be almost exclusively standardized with reference to specific Climate Scenarios (e.g. Net Zero). These scenarios coordinate the optimal path towards achieving a carbon neutral world and represent the quintessential example of socioeconomic planning, crucially undermining neoliberal ideas of ‘the market’ as the ultimate calculative device.
Resumo:
Cardiac arrest during heart surgery is a common procedure and allows the surgeon to perform surgical procedures in an environment free of blood and movement. Using a model of isolated rat heart, the authors compare a new cardioplegic solution containing histidine-tryptophan-glutamate (group 2) with the histidine-tryptophan-alphacetoglutarate (group 1) routinely used by some cardiac surgeons. To assess caspase, IL-8 and KI-67 in isolated rat hearts using immunohistochemistry. 20 Wistar male rats were anesthetized and heparinized. The chest was opened, cardioctomy was performed and 40 ml/kg of the appropriate cardioplegic solution was infused. The hearts were kept for 2 hours at 4ºC in the same solution, and thereafter, placed in the Langendorff apparatus for 30 minutes with Ringer-Locke solution. Immunohistochemistry analysis of caspase, IL-8, and KI-67 were performed. The concentration of caspase was lower in group 2 and Ki-67 was higher in group 2, both P<0.05. There was no statistical difference between the values of IL-8 between the groups. Histidine-tryptophan-glutamate solution was better than histidine-tryptophan-alphacetoglutarate solution because it reduced caspase (apoptosis), increased KI-67 (cell proliferation), and showed no difference in IL-8 levels compared to group 1. This suggests that the histidine-tryptophan-glutamate solution was more efficient than the histidine-tryptophan-alphacetoglutarate for the preservation of hearts of rat cardiomyocytes.