936 resultados para GEOLOGIC FORMATIONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents a series of irregular-grid based numerical technique for modeling seismic wave propagation in heterogeneous media. The study involves the generation of the irregular numerical mesh corresponding to the irregular grid scheme, the discretized version of motion equations under the unstructured mesh, and irregular-grid absorbing boundary conditions. The resulting numerical technique has been used in generating the synthetic data sets on the realistic complex geologic models that can examine the migration schemes. The motion equation discretization and modeling are based on Grid Method. The key idea is to use the integral equilibrium principle to replace the operator at each grid in Finite Difference scheme and variational formulation in Finite Element Method. The irregular grids of complex geologic model is generated by the Paving Method, which allow varying grid spacing according to meshing constraints. The grids have great quality at domain boundaries and contain equal quantities of nodes at interfaces, which avoids the interpolation of parameters and variables. The irregular grid absorbing boundary conditions is developed by extending the Perfectly Matched Layer method to the rotated local coordinates. The splitted PML equations of the first-order system is derived by using integral equilibrium principle. The proposed scheme can build PML boundary of arbitrary geometry in the computational domain, avoiding the special treatment at corners in a standard PML method and saving considerable memory and computation cost. The numerical implementation demonstrates the desired qualities of irregular grid based modeling technique. In particular, (1) smaller memory requirements and computational time are needed by changing the grid spacing according to local velocity; (2) Arbitrary surfaces and interface topographies are described accurately, thus removing the artificial reflection resulting from the stair approximation of the curved or dipping interfaces; (3) computational domain is significantly reduced by flexibly building the curved artificial boundaries using the irregular-grid absorbing boundary conditions. The proposed irregular grid approach is apply to reverse time migration as the extrapolation algorithm. It can discretize the smoothed velocity model by irregular grid of variable scale, which contributes to reduce the computation cost. The topography. It can also handle data set of arbitrary topography and no field correction is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shijiawan –Lijiacha area, lying on the northeastern part of the Shanbei Slope of Ordos Basin, was selected as studying area. The previous explorations proved that the 2nd segment and 6th segment of the Yanchang Formation are the most important oil-bearing formations. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity. Therefore, with petrology methodologies, such as outcrop observation, core description, geophysical logging interpretation, thin section determination, scanning electron microscope, as well as rock property analysis, the reservoirs was were systematically studied and characterized. The sedimentary micro-facies, seals, reservoir-seal combines, migration pathways and entrapping modes were taken into account. The author tempted to establish a base for further studies on reservoirs and on petroleum geology, and to provide some reliably geological evidences for later prospect activities. It was found that the sediments in the 2nd and 3rd segments of the Yanchang Formation in Shijiawan –Lijiacha area were deposited in braided rivers, and most sandy-bodies were identified as channel sandbars. The 4+5th and 6th segments were principally deposited in deltaic-plain environment, consisting of corresponding sub-facies such as distributary channels, natural levee, crevasse-splay and marsh. The skeleton sandy-bodies were identified as sandy sediments of distributary channels. The sand grains in reservoir in studied area possess generally low mineralogical maturity and moderate structural maturity, and the form of pores may be classified into intergranular types and dissolved types. Most reservoirs of Yanchang Formation in Shijiawan –Lijiacha area belong to extreme low-porosity low-permeability ones (type III), and the 2nd sediments belongs to low permeability one (type II) and the 6th segment belong to super low-permeability one(type Ⅳ). The reservoirs in the 2nd segment behave more heterogeneous than those in the 6th segment. The statistic analysis results show that, for 6th and 4+5th segments, the high quality reservoir-seal combines may be found everywhere in the studied area except in the northwest and the southwest parts; and for 1st and 2nd segments, in the northeast, central and southwest parts Petroleum migration happened in the duration of the Early Cretaceous period in both lateral and vertical directions. The migration paths were mainly constructed by permeable sandy-bodies. The superimposed channel sandy-bodies consist of the principal part of the system of carriers. the vertical fractures, that may travel through the seals between reservoirs, offered the vertical paths for migrating oil. It may be synthesized that oil coming from south kitchens migrated first laterally in carriers in the 6th segment. When arrived at the studied area, oil will migration laterally or/and vertical within both the sandy-bodies and fractures, in a climbing-stair way. The results demonstrate that the oil was entrapped in traps structure-lithology and/or lithology traps. In some cases, the hydrodynamic force may help to trap oil. Accumulation of oil in the area was mainly controlled by sedimentary facies, seals, structure, and heterogeneity of reservoir in the 2nd, 4+5th and 6th segments. Especially, the oil distributions in both the 2nd and 6th segments were obviously influenced by seals in the 4+5th segment. The existence of seals in 1st segment seems important for accumulation in the 2nd segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Now low porosity and low permeability reservoir is one of the main targets of exploration for the onshore oilfields of China. Most of the reservoirs are none flowing because of bad formation percolation condition, poor gas oil ratio , low formation pressure coefficient and other factors. In the recent years, a number of domestic oilfields have carried out some research work and achieved some success on oil testing and production technology in such formation. But by now, there is still no systematic and mature technology, particularly testing technology in none flowing formation is still needed further study. Based on study the key problem of well testing and interpretation technology in none flowing formation, solve the important problems in well testing technology, continuously improve and innovate geological information acquisition technology for none flowing reservoir, accurately acquire boundary information and evaluate reservoir flow characteristics. Its wide application remarkable result has shown. The main results and cognitions obtained from research are as follows: 1. This new technology research results help solve the occurrent problems in well testing process for none flowing formations, such as small investigation radius, poor representative of interpretation results from the poor data, low level application of interpretation results. This new technology helps create favorable conditions for early precise reservoir evaluation and reduction of the risk of exploration. 2. The technological difficulties for none flowing well testing are successfully solved by using none flowing formation combined mechanical tool string .This method has been proved by its applications to be able to improve the efficiency of the testing and the quantity of the acquired test data ,and so as to enhance the application of the interpretation results of the test in development of oil fields. 3. The application of the rotary formation tester, selective test valve, well testing string and their allier tools help to resolve problems such as the operation of opening and shutting-in the well under different well conditions, to broaden the scope of well test technology for none flowing formations. 4. Refined Testing Technique for production Wells has greatly shortened the testing dwration and improved the efficiency and accuracy of operation, enriched test results, and at the same time created conditions for conducting multi-well interference well testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complex fault block reservoir is very important type in chinese oilfield.The reservoir have for many years and it has been the important issue of oil-gas exploration and development in china that how to increase reserves and production. Therefore,taking the Pucheng-oil field as an example, the article intensive study the geologic feature of oil pool, correctly recognize the rule of oil-gas accumulation and based on the fine representation of the characteristic of reservoir, research the remaining oil in high developed area,which is important for progressive exploratioon and development and taping the remaining oil. The article multipurpose uses the data of geology,drilling,wellloging, analysis and assay and so on, under the guidance multi-disciplinary theory, intensify the comprehension of the geologic feature of oil pool in high developed oil field. Based on the high-resolution sequence stratigraphic framework ,the article points out that Es_2 upper 2+3 reservoir in the south area of Pucheng oilfield is in the depositional environment of Terminal Fan, which has constant supply of sedimentary source ,and build the sedimentation model. Studies have shown that the major reservoir in work area is the distributary channel sandbody in central Sub-facies of Terminal Fan,secondary is both lateral accretion sandbodies of channel sands,nearby and far away from the channel overflowing sandbodies in front of the fan. The article analyze the effect of depth of burial of the reservoir, sandstone structure, strata pressure and bioturbate structure on control action of physical property for reservoir and indicate that deposition and diagenesis are major controlling factors.By building the model of reservoir heterogeneity, the article show the magnitude of reservoir heterogeneity ,the genesis and identification mark of Interlayer and build the the model of interlayer. in this area the vertical distribution of interlayer is complicated,but the intraed interlayer distribute steady. Thick interlayer is steady and the thin is relatively spreaded. By building models of fault sealing,stress field and fluid potential field of the south of the pucheng oil field, the regular pattern of fluid migration and accumulation runs out. By researching the elements of oil accumulation, migration pathway and accumulation period with quantification and semiquantitative methods,we bulit the oil-gas reservoir-forming mode of the south of the pucheng oil field,which will be the foundation of the rolling exploratory development in the future. We promulgated the master control element and the rule of distribution of the remaining oil with the upside 2+3 oil layer in shaer in the south of the pucheng oil field as an example.In this area, the formation and the distribution of the remaining oil is controled by the sedimentary microfacies, reservoir heterogeneity,fault and reservoir engineering. The remaining oil is concentrated in the vicinity of the gas cap, updip of the fault block and the area with incomplete flooding. Remaining oil saturation in some area can get 50%, so there are many places in which we can enhance oil recovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tianshan Mountains is located about 1000-2000 km north of the India-Asia suture and is the most outstanding topography in central Asia, with transmeridional length of nearly 2500 km, north-southern wideness of ~ 300-500 km, peaks exceeding 7000 m above sea level (asl.), and average altitude of over 4000 m asl. Much of the modern relief of the Tianshan Range is a result of contraction driven by the collision of the India subcontinent with the southern margin of Asia, which began in early Tertiary and continues today. Understanding where, when and how the deformation of the Tianshan Mountains occurred is essential to decipher the mechanism of intracontinental tectonics, the process of foreland basin evolution and mountain building, and the history of climate change in central Asia. In order to better constrain the Cenozoic building history of the Tianshan Mountains and the climate change in the southern margin of the Junggar Basin, we carried out multiple studies of magnetostratigraphy, sedimentology, and stable isotopes of paleosol carbonate at the Jingou River section, which is located at the Huoerguosi anticline, the westernest one of the second folds and thrust faults zone in the northern piedmont of the Tianshan Mountains. The Jingou River section with a thickness of about 4160 m is continuous in deposits according to the observed gradual change in sedimentary environments and can be divided into five formations: Anjihaihe, Shawan, Taxihe, Dushanzi and Xiyu in upward sequence. Characteristic remamences were isolated by progressive thermal demagnetization, generally between 300 and 680℃. A total of 1133 out of 1607 samples yielded well-defined ChRMs and were used to establish the magnetostratigraphic column of a 3270-m-thick section from the exposed base of the Anjihaihe Formation to the middle of the Xiyu Formation. Two vertebrate fossil sites and a good correlation with the CK95 geomagnetic polarity time scale suggest that the section was deposited from ~30.5 to ~4.6 Ma and the age of the top of the Xiyu formation is ~2.6 Ma based on an extrapolation of the sedimentation rates. A plot of magnetostratigraphic age vs. height at the Jingou River section shows that significant increases in sedimentation rates as well as notable changes in depositional environments occurred at ~26-22.5 Ma, ~13-11 Ma and ~7 Ma, which represent the initial uplift of the Tianshan Mountains and two subsequent rapid uplift events. In addition, changes in sedimentation rates display characteristic alternations between increases and decreases, which probably indicate that the uplift of the Tianshan Mountains was episodic. We discussed the history of C4 biomass and climatic conditions in the southern margin of the Junggur Basin using the stable carbon and oxygen isotope composition of paleosol carbonates from the Jingou River section during ~17.5-6.5 Ma. The δ13C values indicate that the proportion of C4 biomass was uniform and moderate (15-20 %) during the interval of ~17.5-6.5 Ma. We proposed three hypotheses for this pattern of C4 biomass: (1) counteraction of two opposed factors (global cooling since ~15 Ma and thereafter increased dry and seasonality in central Asia) controlling the growth of C4 grasses, (2) variability in abundance of C3 grasses relative to C3 trees and shrubs if vegetation had ever changed in ecosystems, and (3) the higher latitude of the studied region. The δ18O values show a stepwise negative trend since ~13 Ma which may be attributed to three factors: (1) the temperature decreasing gradually after the middle Miocene (~15 Ma), (2) the increasing contribution of the moistures carried by the polar air masses from the Arctic Ocean to precipitation, and (3) the gradual retreat westward and disappearance of the Paratethys Ocean. Among them, which one played a more important role will need further study of the paleoclimate in central Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Tarim Basin, extensive carbonates of Lower Paleozoic occur, in which thick Cambrian and Lower Ordovician dolostones are widespread and show a potential perspective in hydrocarbon exploration. So they are viewed as an important target for exploration. Tarim Basin is a poly phase composite basin, which underwent multiphase tectonic modification and volcanic activities; these exerted significant influences on the basin-fills and basin fluid evolution, thereby the diagenetic history, particularly on the deep-buried Lower Paleozoic dolostones. Referring to the classification of dolomite texture proposed by Gregg & Sibley (1984) and Sibley & Gregg (1987). In view of crystal size, crystal shape, crystal surface and contact relation, eight genetic textures of dolomite crystals are identified, based on careful petrographic examinatoins. These textures include: 1) micritic dolomite; 2) relict mimetic dolomite; 3)finely crystalline, planar-e(s), floating dolomite; 4)finely crystalline, planar-e(s) dolomite; 5) finely-coarse crystalline, nonplanar-a dolomite; 6)coarse crystalline, nonplanar saddle dolomite; 7) finely-medium crystalline, planar-e(s) dolomite cement; 8) coarse crystalline, nonplanar saddle dolomite cement, in which the former six textures occurs as in matrix, the latter two in the cements. Detailed geochemistry analysis is carried out on the basis of genetic textures of dolomite and related minerals such as quartz and calcite. The result showed that the calcite has the highest average content in Sr, which can be sorted into two groups; micritic dolomite has the highest average content in Sr among all kinds of dolomites; the REE patterns of all kinds of dolomites is similar to those of marine limestone samples. Saddle dolomite cement has δ13C values from -2.44‰ to 1.27‰ PDB, and δ18O values from -13.01‰ to -5.12‰ PDB, which partially overlap with those of matrix dolomite (δ13C values from -2.83‰ to 2.01‰ PDB, δ18O values from -10.63‰ to -0.85‰ PDB). Saddle dolomite cement has 87Sr/86Sr ratios from 0.7086 to 0.7104, which totally overlap with those of matrix dolomite (0.7084 ~ 0.7116). Compared with saddle dolomite derived from other basins all over the world, the saddle dolomites of Tarim Basin have similar δ13C, δ18O and 87Sr/86Sr ratios values with those of matrix dolomite. This scenario reflects the unusual geological setting and special dolomitizing liquid of Tarim Basin. The values of δ18O, δ13C and 87Sr/86Sr ratios of calcite also can be sorted out two groups, which may been resulted from the one stage of extensive uplift of Tarim Basin from Mesozoic to Cenozoic. Fluid inclusion microthermometry data of the diagenetic mineral indicates that matrix dolomite has relatively low homogenization temperatures (Th) of 80~105oC and salinities of 12.3% (wt% NaCl equivalent); saddle dolomite has highest Th values, which concentrate in 120~160oC and salinities of 13.5~23.7% (wt% NaCl equivalent); quartz has relatively low Th of 135~155oC and salinities of 17.8~22.5% (wt% NaCl equivalent); calcite has relatively low Th of 121~159.5oC and salinities of 1.4~17.5% (wt% NaCl equivalent). These data suggest that the saddle dolomites could have formed in thermal brine fluids. Based on comprehensive petrographical study, detailed geochemistry and fluid inclusion microthermometry analysis on Lower Paleozoic dolomite of Tarim Basin, three types of dolomitisation mechanism are proposed: Penecontemporaneous dolomitisation (Sabkha dolomitisation & Reflux dolomitisation); Burial dolomitisation (shallow-intermediate burial dolomitisation & Deep burial dolomitisation ); Hydrothermal cannibalized dolomitisation. In view of host-specified occurrences of hydrothermal dolomite, the low abundance of saddle dolomite and high geochemical similarities between saddle dolomite and host dolomite, as well as highest Th and high salinities , the hydrothermal dolomite in Tarim Basin is thus unique, which could have been precipitated in modified fluid in the host dolomite through intraformational thermal fluid cannibalization of Mg ions from the host. This scenario is different from the cases that large scale dolomitizing fluid migration took place along the fluid pathways where abundant saddle dolomite precipitated. Detailed observations on 180 petrographic and 60 casting thin sections show original pores in Lower Paleozoic dolomite were almost died out by complicated diagenetic process after a long time geologic evolution. On the other hand, deep-buried dolomite reservoirs is formed by tectonic and hydrothermal reforming on initial dolomites. Therefore, the distribution of structure-controlled hydrothermal dolomite reservoirs is predicted in Tabei and Tazhong Area of Tarim Basin based on the geophysical data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the basis of the character of sedimentation and reservoir researching as well as diagenesis, using conventional and update testing measures, classificati-on and evaluation of the tesla low permeability reservoir in Ordos Basin is pr-esented. From Chang 8 to Chang 4+5 oil formations, four facies developed, includi-ng alluvial fan facies, delta facies, lake facies as well as density current. They were controlled by the northeastern, the southwest, the southern and the northwestern provenances. Distributary channel underwater and mouth bar of delta fr-ont are the main reservoirs. Detrital component has the different character in s-outh and in north. Sedimentary system in the northeastern part has more felds-par and less quartz. Sedimentary system in the southern part has more quartz and less feldspar. Because of sedimentation and diagenesis, the oil formations in region of interest formed the different features of pore array of the tesla l-ow permeability reservoirs. After researching, it is found that the active porosity and the main throat radius of Chang 4+5 are the highest, and they are positive correlation with per-meability. The exponent of flowing interval falls in the sortorder: Chang 8, Chang 4+5, Chang 6, Chang 7. Using clustering procedure and quaternion, the reservoirs of Yanchang for-mation in Ordos Basin are divided into five types. Ⅰ-good reservoirs and Ⅱ-appreciably good reservoirs occur in distributary channel and mouth bar. Ⅲ-poor reservoirs and Ⅳ-poorer reservoirs exist in natural levee, crevasse splay under-water and turbidity fan. It is forecasted that the oil area in Ⅰ-good reservoirs is about 4336.68 square kilometers, and the oil area in Ⅱ-appreciably good reservoirs is 28013.28 square kilometers or so, and the oil area in Ⅲ-poor rese-rvoirs is 28538.05 square kilometers more or less.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing attentions have been paid to the subsurface geological storage for CO2 in view of the huge storage capacity of subsurface reservoirs. The basic requirement for subsurface CO2 storage is that the CO2 should be sequestrated as supercritical fluids (physical trapping), which may also interact with ambient reservoir rocks and formation waters, forming new minerals (chemical trapping). In order to the effective, durable and safe storage for CO2, enough storage space and stable sealing caprock with strong sealing capacity are necessitated, in an appropriate geological framework. Up till now, hydrocarbon reservoirs are to the most valid and appropriate CO2 storage container, which is well proven as the favorable compartment with huge storage capacity and sealing condition. The thesis focuses on two principal issues related to the storage and sealing capacity of storage compartment for the Qingshankou and Yaojia formations in the Daqingzijing block, Southern Songliao Basin, which was selected as the pilot well site for CO2-EOR storage. In the operation area, three facies, including deltaic plain, deltaic front and subdeep-deep lake facies associations, are recognized, in which 11 subfacies such as subaqueous distributary channel, river- mouth bar, interdistributary bay, sheet sandbody, crevasse splay and overflooding plain are further identified. These subfacies are the basic genetic units in the reservoir and sealing rocks. These facies further comprise the retrogradational and progradational depositional cycles, which were formed base- level rise and fall, respectively. During the regressive or lake lowstand stage, various sands including some turbidites and fans occurred mostly at the bottom of the hinged slope. During the progradation stage, these sands became smaller in size and episodically stepped backwards upon the slope, with greatly expanded and deeped lake. However, most of Cretaceous strata in the study area, localized in the basin centre under this stage, are mainly composed of grey or grizzly siltstones and grey or dark grey mudstones intercalated with minor fine sandstones and purple mudstones. On the base of borehole and core data, these siltstones are widespread, thin from 10 to 50 m thick, good grain sorting, and have relative mature sedimentary structures with graded bedding and cross- lamination or crossbeds such as ripples, which reflect strong hydrodynamic causes. Due to late diagenesis, pores are not widespread in the reservoirs, especially the first member of Qingshankou formation. There are two types of pores: primary pore and secondary cores. The primary pores include intergranular pores and micropores, and the secondary pores include emposieus and fracture pores. Throat channels related to pores is also small and the radius of throat in the first, second and third member of Qingshankou formation is only 0.757 μm, 0.802 μm and 0.631 μm respectively. In addition, based on analyzing the probability plot according to frequency of occurrence of porosity and permeability, they appear single- peaked distribution, which reflects strong hetero- geneity. All these facts indicate that the conditions of physical property of reservoirs are not better. One reason may be provided to interpret this question is that physical property of reservoirs in the study area is strong controlled by the depositional microfacies. From the statistics, the average porosity and permeability of microfacies such as subaqueous distributary channel, channel mouth bar, turbidites, is more than 9 percent and 1md respectively. On the contrary, the average porosity and permeability of microfacies including sand sheet, flagstone and crevasse splay are less than 9 percent and 0.2md respectively. Basically, different hydrodynamic environment under different microfacies can decide different physical property. According to the reservoir models of the first member of Qingshankou formation in the No. well Hei47 block, the character of sedimentary according to the facies models is accord to regional disposition evolution. Meantime, the parameter models of physical property of reservoir indicate that low porosity and low permeability reservoirs widespread widely in the study area, but the sand reservoirs located in the channels are better than other places and they are the main sand reservoirs. The distribution and sealing ability of fault- fractures and caprock are the key aspects to evaluate the stable conditions of compartments to store CO2 in the study area. Based on the core observation, the fractures widespread in the study area, especially around the wells, and most of them are located in the first and second member of Qingshankou formation, almost very few in the third member of Qingshankou formation and Yaojia formation instead. In addition, analyzing the sealing ability of eleven faults in the three-dimensional area in the study area demonstrates that most of faults have strong sealing ability, especially in the No. well Hei56 and Qing90-27. To some extent, the sealing ability of faults in the No. well Hei49, Qing4-6 and Qing84-29 are worse than others. Besides, the deposition environment of most of formations in the study area belongs to moderately deep and deep lake facies, which undoubtedly take advantage to caprocks composed of mudstones widespread and large scale under this deposition environment. In the study area, these mudstones distribute widely in the third member of Qingshankou formation, Yaojia and Nenjiang formation. The effective thickness of mudstone is nearly ~550m on an average with few or simple faults and fractures. In addition, there are many reservoir beds with widely- developed insulated interbeds consist of mudstones or silty mudstone, which can be the valid barrier to CO2 upper movement or leakage through diffusion, dispersion and convection. Above all, the closed thick mud caprock with underdeveloped fractures and reservoir beds can be taken regard as the favorable caprocks to provide stable conditions to avoid CO2 leakage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Widespread black chert-shales occur in the Ediacaran-Cambrian(E-C) boundary successions along the flank of Yangtze Platform, South China, remarkable changes in sedimentology, geochemistry and biology were recorded. Although extensive studies were carried out upon this boundary succession, the origin of black chert-shales still remain controversial. This paper focuses on the E-C black chert-shales in western Hunan, South China, upon which detailed depositional and geochemical changes are documented, accordingly a depositional model for black chert-shales is proposed. Stratigraphic anatomy across the depositional strike demonstrates that the shallow-water Dengying dolostone along the platform margin sharply pass basinward into the Liuchapo chert successions, which indicate syndepositional extensional faulting at depth could have occurred along the platform margin. The deep-water Niutitang phosphorite-rich black shales are either underlain by the Dengying dolostones on the platform margin toward platform interior or directly by the Liuchaopo chert successions farther basinwards. By detailed investigation, silica chimneys are firsly identified approximately in the chert along platform margin; two types of silica chimneys, including mounded and splayed/funnelized chert(generally brecciated) bodies are further sorted out. The mounded chert are exitbited by domed or hummocky surfaces on the top and irregular spongy to digitiform internal fabrics; within the silica mounds, abundant original vesicles/voids and/or channels were mostly plugged by initial chalcedony, quartze crystals with minor dolomite and bladed barite crystals. Splayed/funnelized brecciated chert “intrusion” cross-cut the uppermost dolostones capping to the horizon underneath, and are directly overlain by the Niutitang phosphorite-rich black shales. Their similarities to the silica chimneys reported from the oceanic spreading centres suggest a similar origin responsible for these unique silica bodies which is also supported by the microthermonmetric data and element geochemistry. High P, Ba, Fe contents and positive correlation between Fe and TOC concentrations in the Niutitang black shales indicate a high palaeo-productivity in the Early Cambrian ocean. The low Th/U and the high V/Cr, V/Sc, V/(V+Ni) ratios in the black shales suggest an anoxic water condition during this interval. Furthermore, Positive Eu anomalies and high Ba contents in the sediments also imply a hydrothermal influence on the formation of Niutitang black shales. To better constrain the placement of deep-water successions straddling the E-C boundary and the timing of hydrothermal silica chimneys, sensitive high-resoluton ion microprobe(SHRIMP) U-Pb dating of zircon grains from tuffs within the chert succession of Liuchapo Formation at Ganziping was conducted and yields a weighted-mean 206Pb/238Pb age at 536.6±5.5Ma, younger than E-C boundary age(542.0±0.3Ma). This age combined with carbon isotopic data is then proposed to correspond to the U-Pb age of zircons(538.2±1.5Ma) from the Zhongyicun member of Meishucun Formation at Meishucun in eastern Yunna, thus, the E-C boundary in Gazngziping was placed between the Dengying formations and Liuchapo formatioms. therefore, the silica chimneys took place at the beginning of the Cambrian period. The temporal coincidence of silica chimneys and negative excursions of δ13C and δ34Spy pairs suggest hydrothermal activities were likely responsible for the isotopic changes. Under such a circumstance, vast amounts of greenhouse gases(CO2, CH4, H2S), with highly 13C-depleted carbon and 34S-depleted sulfur would be released into the ocean and atmosphere. A positive shift in δ34Scas and Δ34S values from the late Ediacaran to the Early Cambrian could be a reflection of enhanced bacterial sulfate reduction(BSR), strengthened by the intensified oceanic anoxia stimulated by hydrothermal activities. Based on the analyses of sedimentology and geochemistry, a model- “oceanic anoxia induced by hydrothermal–volcanic activies” was proposed to responsible for the formation of black chert-shales during this E-C transition. Under this case, hydrothermal-volcanic activies could release large large amount of greenhouse into atmosphere and metal micronutrients into the ocean, which may lead to global warming, stratified ocean, thereby a high palaeoproductivity; on the other hand, the massive releasing of reduced hydrothermal fluids with abundant H2S, could have in turn enhanced the ocean anoxia. All of these were favourable the for preservation of organic matter, and subsequent extensive deposition of black silica-shales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rock mass is widely recognized as a kind of geologic body which consists of rock blocks and discontinuities. The deformation and failure of rock mass is not only determined by rock block,but also by discontinuity which is virtually more important. Mutual cutting and combination of discontinuities controlled mechanical property of rock mass. The complex cutting of discontinuities determine the intense anisotropy on mechanical property of rock mass,especially under the effect of ground stress. Engineering practice has show that the brittle failure of hard rock always occurs when its working stress is far lower than the yield strength and compressive strength,the failure always directly related to the fracture propagation of discontinuities. Fracture propagation of discontinuities is the virtue of hard rock’s failure. We can research the rock mass discontinuous mechanical properties precisely by the methods of statistical analysis of discontinuities and Fracture Mechanics. According to Superposition Principle in Fracture Mechanics,A Problem or C Problem could be chosen to research. Problem A mainly calculates the crack-tip stress field and displacement field on internal discontinuities by numerical method. Problem C calculate the crack-tip stress field and displacement field under the assumption of that the mainly rock mass stress field has been known. So the Problem C avoid the complex mutual interference of stress fields of discontinuities,which is called crack system problem in Fracture Mechanics. To solve Problem C, field test on stress field in the rock mass is needed. The linear Superposition of discontinuities strain energies are Scientific and Rational. The difference of Fracture Mechanics between rock mass and other materials can mostly expression as:other materials Fracture Mechanics mostly face the problem A,and can’t avoid multi-crack puzzle, while the Rock mass Fracture Mechanics answer to the Problem C. Problem C can avoid multi-discontinuities mutual interference puzzle via the ground stress test. On the basis of Problem C, Fracture Mechanics could be used conveniently in rock mass. The rock mass statistics fracture constitutive relations, which introduced in this article, are based on the Problem C and the Discontinuity Strain Energy linear superposition. This constitutive relation has several merits: first, it is physical constitutive relation rather than empirical; second, it is very fit to describe the rock mass anisotropy properties; third, it elaborates the exogenous factors such as ground stress. The rock mass statistics fracture constitutive relation is the available approach to answer to the physical, anisotropic and ground stress impacted rock mass problems. This article stand on the foundation of predecessor’s statistics fractures constitutive relation, and improved the discontinuity distributive function. This article had derived the limitation of negative exponential distribution in the course of regression analysis, and advocated to using the two parameter negative exponential distribution for instead. In order to solve the problems of two-dimension stability on engineering key cross-sectional view in rock mass, this article derived the rock mass planar flexibility tensor, and established rock mass two-dimension penetrate statistics fracture constitutive relation on the basis of penetrate fracture mechanics. Based on the crack tip plasticity research production of penetrate fracture, for example the Irwin plasticity equifinality crack, this article established the way to deal with the discontinuity stress singularity and plastic yielding problem at discontinuity tip. The research on deformation parameters is always the high light region of rock mass mechanics field. After the dam foundation excavation of XiaoWan hydroelectric power station, dam foundation rock mass upgrowthed a great deal of unload cracks, rock mass mechanical property gotten intricacy and strong anisotropy. The dam foundation rock mass mostly upgrowthed three group discontinuities: the decantation discontinuity, the steep pitch discontinuity, and the schistosity plane. Most of the discontinuities have got partial unload looseness. In accordance with ground stress field data, the dam foundation stress field greatly non-uniform, which felled under the great impaction of tectonic stress field, self-weight stress field, excavation geometric boundary condition, and excavation, unload. The discontinuity complexity and stress field heterogeneity, created the rock mass mechanical property of dam foundation intricacy and levity. The research on the rock mass mechanics, if not take every respected influencing factor into consideration as best as we can, major errors likely to be created. This article calculated the rock mass elastic modulus that after Xiao Wan hydroelectric power station dam foundation gutter excavation finished. The calculation region covered possession monolith of Xiao Wan concrete double-curvature arch dam. Different monolith were adopted the penetrate fracture statistics constitutive relation or bury fracture statistics constitutive relation selectively. Statistics fracture constitutive relation is fit for the intensity anisotropy and heterogeneity rock mass of Xiao Wan hydroelectric power station dam foundation. This article had contrastive analysis the statistics fracture constitutive relation result with the inclined plane load test actual measurement elastic modulus and RMR method estimated elastic modulus, and find that the three methods elastic modulus have got greatly comparability. So, the statistics fracture constitutive relations are qualified for trust. Generally speaking,this article had finished following works based on predecessors job: “Argumentation the C Problems of superposition principle in Fracture Mechanics, establish two-dimension penetrate statistics fracture constitutive relation of rock mass, argue the negative exponential distribution limitation and improve it, improve of the three-dimension berry statistics fracture constitutive relation of rock mass, discontinuity-tip plastic zone isoeffect calculation, calculate the rock mass elastic modulus on two-dimension cross-sectional view”. The whole research clue of this article inherited from the “statistics rock mass mechanics” of Wu Faquan(1992).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on a viewpoint of an intricate system demanding high, this thesis advances a new concept that urban sustainable development stratagem is a high harmony and amalgamation among urban economy, geo-environment and tech-capital, and the optimum field of which lies in their mutual matching part, which quantitatively demarcates the optimum value field of urban sustainable development and establishes the academic foundation to describe and analyze sustainable development stratagem. And establishes a series of cause-effect model, a analysissitus model, flux model as well as its recognizing mode for urban system are established by the approach of System Dynamics, which can distinguish urban states by its polarity of entropy flows. At the same time, the matter flow, energy flow and information flow which exist in the course of urban development are analyzed based on the input/output (I/O) relationships of urban economy. And a new type of I/O relationships, namely new resources-environment account, are established, in which both resource and environment factors are considered. All above that settles a theoretic foundation for resource economy and environment economy as well as quantitative relationships of inter-function between urban development and geoenvironment, and gives a new approach to analyze natinal economy and urban sustainable development. Based on an analysis of the connection between resource-environmental construct of geoenvironment and urban economy development, the Geoenvironmental Carrying Capability (GeCC) is analyzed. Further more, a series of definitions and formula about the Gross Carrying Capability (GCC), Structure Carrying Capability (SCC) and Impulse Carrying Capability (ICC) is achieved, which can be applied to evaluate both the quality and capacity of geoenvironment and thereunder to determine the scale and velocity for urban development. A demonstrative study of the above is applied to Beihai city (Guangxi province, PRC), and the numerical value laws between the urban development and its geoenvironment is studied by the I/O relationship in the urban economy as following: · the relationships between the urban economic development and land use as well as consumption of underground water, metal mineral, mineral energy source, metalloid mineral and other geologic resources. · the relationships between urban economy and waste output such as industrial "3 waste", dust, rubbish and living polluted water as well as the restricting impact of both resource-environmental factors and tech-capital on the urban grow. · Optimization and control analysis on the reciprocity between urban economy and its geoenvironment are discussed, and sensitive factors and its order of the urban geoenvironmental resources, wastes and economic sections are fixed, which can be applied to determine the urban industrial structure, scale, grow rate matching with its geoenvironment and tech-capital. · a sustainable development stratagem for the city is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the temperature data from 196 wells and thermal conductivity measurements of 90 rock samples, altogether 35 heat flow data are obtained. The results show that the Junggar basin is a relatively "cold basin" at present. The thermal gradients vary between 11.6 and 26.5 ℃/km, and the thermal conductivity change from 0.17 to 3.6 W/mK. Heat flow ranges from 23.4 to 53.7 mW/m~2 with a mean of 42.3 ± 7.7 mW/m~2. The heat flow pattern shows that heat flow is higher on the uplifts and lower on the depressions. The overall low present-day heat flow in the Junggar Basin reflects its stable cratonic basement and Cenozoic tectonothermal evolution characterized by lithospheric thickening, thrust and fault at shallow crust as well as consequently quick subsidence during the Late Cenozoic. The study of the basin thermal history, which is one of the important content of the basin analysis, reveals not only the process of the basin's tectonothermal evolution, but also the thermal evolution of the source rocks based on the hydrocarbon generation models. The latter is very helpful for petroleum exploration. The thermal history of the Junggar basin has been reconstructed through the heat flow based method using the VR and Fission track data. The thermal evolutions of main source rocks (Permian and Jurassic) and the formations of the Permian and the Jurassic petroleum systems as well as the influences of thermal fields to petroleum system also have been discussed in this paper. Thermal history reconstruction derived from vitrinite reflectance data indicates that the Paleozoic formations experienced their maximum paleotemperature during Permian to Triassic with the higher paleoheat flow of around 70-85 mW/m~2 and the basin cooled down to the present low heat flow. The thermal evolution put a quite important effect on the formation and evolution of the petroleum system. The Jurassic petroleum system in the Junggar basin is quite limited in space and the source rocks of Middle-Lower Jurassic entered oli-window only along the foreland region of the North Tianshan belt, where the Jurassic is buried to the depth of 5-7 km. By contrast, the Middle-Lower Permian source rocks have initiated oil and gas generation in latter Permian to Triassic, and the major petroleum systems, like Mahu-West Pen 1 Well, was formed prior to Triassic when later Paleozoic formation reached the maximum paleotemperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of regional crustal stability of active tectonic region basically includes analysis of recent activity of Earth's crust, single factor assessment, study of complexity, and comprehensive assessment of crust stability. In this thesis, some work are made as follows: · Based on abundant data from gravity field, aeromagnetic survey, magnetism, magnetotelluric deep sounding, remote sensing and geotectonic as well as earthquakes observed in recent years around this region and adjacent zones, we can get a through understanding about the structural features and activity of the earth's crust in Chuan-Dian region. The results from explosion earthquake and telluric electromagnetic sounding are consistent with the structural features of the crust manifested by the geophysical field. The data of deep geologic structures are important for us to work out a vivid three-dimensional model of the earth's crustal structure of the Jinsha River region. According to a synthesis, the author of this thesis proposes some indicators for dividing the faulted blocks. It can also be inferred that the movement of the Chuan-Dian faulted block, which is the relatively active part of southwestern China, is controlled by the boundary faults, and the intensive activity and deformation are concentrated along the boundaries of the block. · Mainly discussing respectively the mechanism and laws of active faults, earthquakes, and geological hazards activity, and their influences on the stability and security of engineering, also trying to probe into the way to assess the risk of single factor in this section. Especially with the method of fractal geometry, the thesis has discussed how to study the complexity of each factor. These geologic hazards which are distributed at the uppermost part of the crust in this region form a typical mountainous set of the active tectonic areas. The results of survey show that some slopes are liable- to -sliding with a weak layer of low shear strength. Occurrences of landslides are to a great extent related to local geological structures, in particular active faults. This is why numerous landslides have occurred simultaneously around the epicenter of a strong earthquake or the center of a strong rainfall, which are related to active faults. · The analysis of the crustal stability is based on a regional grid division, and a fuzzy comprehensive analysis method is used to determine the grade of the quality in each grid. The evaluation factors and their weights are taken from the results of the hierarchical analysis. The evaluation indexes consist of qualitative and quantitative ones. The qualitative ones can be quantified through the experts weighing system, while the quantitative ones can be obtained from statistical analysis. For quality grades, four levels are used: stable, essentially stable, sub-stable, and unstable. The results of the evaluation on Jinshajiang region demonstrate that the crustal stability become distinctly worse in the areas controlled by active deep faults. Therefore, detailed investigations on the active faulting and geologic hazards, include earthquake activity are especially necessary for those areas adjacent to the deep fault belts. On the bases of the data available and the survey results, we have made a preliminary assessment for the construction conditions and adaptability of every planned site in the middle or lower reaches of Jinsha River. Finally, the thesis prospected the vista of the study of crustal stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the basic geologic conditions, the paper is directed by the modem oil-gas accumulation theory and petroleum system in which typical oil pools are analyzed and the shape of lithologic trap and geologic factors are pointed out. The process during which oil and gas migrate from source rock to lithologic trap is rebuilt, and the accumulation model of oil pool is set up. With the comprehensive application of seismic geologic and log data and paying attention to the method and technology which is used to distinguish lithologic accumulation. Promising structural-lithofacies zones are got and the distribution rule of various lithologic accumulation is concluded. With making use of the biologic mark compound, different reservoirs are compared. As a result, the oil and gas in HeiDimiao come from Nenjiang Group's source rocks; in SaErTu from QingShenkou Group's and Nenjiang Group's, and in PuTaohua. GaoTaizi and FuYang from QingShankou Group's. According to the development and distribution of effective source rock, oil distribution and the comparison in the south of SongLiao basin, the characteristic of basin structure and reservoir distribution is considered, and then the middle-upper reservoir of SongLiao basin south are divided into two petroleum system and a complex petroleum system. Because of the characteristic of migration and accumulation, two petroleum systems can furtherly be divided into 6-7 sub-petroleum systems,20 sub-petroleum systems in all. As a result of the difference of the migration characteristic, accumulation conditions and the place in the petroleum system, the accumulation degree and accumulation model are different. So three accumulation mechanism and six basic accumulation model of lithologic trap are concluded. The distribution of lithologic pools is highly regular oil and gas around the generation sag distribute on favorable structural-lithofacies zones, the type of lithological pool vary regularly from the core of sandstone block to the upper zone. On the basic of regional structure and sedimentary evolution, main factors which control the form of trap are discovered, and it is the critical factor method which is used to discern the lithologic trap. After lots of exploration, 700km~2 potential trap is distinguished and 18391.86 * 10~4 tons geologic reserves is calculated. Oil-water distribution rule of pinch-out oil pool is put up on plane which is the reservoirs can be divided into four sections. This paper presented the law of distribution of oil and water in updip pinch-out reservoir, that is, hydrocarbon-bearing formation in plane can be divided into four zones: bottom edge water zone, underside oil and water zone, middle pure oil zone and above residual water zone. The site of the first well should be assigned to be middle or above pure oil zone, thus the exploration value of this type of reservoir can be recognized correctly. In accordance with the characteristics of seism and geology of low permeability thin sandstone and mudstone alternation layer, the paper applied a set of reservoir prediction technology, that is: (1)seism multi-parameter model identification; (2) using stratum's absorbing and depleting information to predict reservoir's abnormal hydrocarbon-bearing range. With the analysis of the residual resource potential and the research of two petroleum system and the accumulation model, promising objective zones are predicted scientifically. And main exploration aim is the DaRngZi bore in the west of ChangLin basin, and YingTai-SiFangZi middle-upper assembly in Honggang terrace.