999 resultados para GEOCHEMISTRY
Resumo:
On Elan Bank, a southwestern promontory of the Kerguelen Plateau in the southern Indian Ocean, we cored an interval of conglomerate and minor sandstone within a thick section of Cretaceous flood basalts. Most of the detritus in these sedimentary rocks is volcanic with the exception of a small amount of conspicuous material of probable continental derivation. The anomalous clasts include several pebbles of gneiss (Nicolaysen et al., 2001, doi:10.1130/0091-7613(2001)029<0235:POPGBG>2.0.CO;2) and garnet sand grains. The presence of continental material on the plateau bears significantly on the interpretation of Indian Ocean basalts (Weis et al., 2001, doi:10.1130/0091-7613(2001)029<0147:OOCCII>2.0.CO;2). The purpose of the present study was to determine the composition of the garnets to provide additional constraints on the nature of the source area.
Resumo:
Mineralogical and geochemical analyses were performed on 40 ash layers of Pleistocene to late Miocene age, recovered during Leg 124 in the Celebes and Sulu Seas (Sites 767, 768, and 769). They provide information on alteration processes related to burial diagenesis. The zonal distribution of secondary volcanic products emphasizes a major diagenetic change, characterized by the complete replacement of volcanic glass by an authigenic smectite-phillipsite assemblage, in tephra layers dated at 3.5-4 Ma. This diagenetic "event" occurs simultaneously in the two basins, and, on the basis of isotopic data, under low-temperature conditions. It is independent of distinct sedimentation rates and related to a relative quiescence of on-land volcanic activity. This period suggests a more uniform paleooceanographic situation having tectonic significance, and probably reflects a kinetic and environmental control of diagenetic reactions.
Resumo:
Triassic (Carnian-Rhaetian) continental margin sediments from the Wombat Plateau off northwest Australia (Sites 759, 760, 761, and 764) contain mainly detrital organic matter of terrestrial higher plant origin. Although deposited in a nearshore deltaic environment, little liptinitic material was preserved. The dominant vitrinites and inertinites are hydrogen-lean, and the small quantities of extractable bitumen contain w-alkanes and bacterial hopanoid hydrocarbons as the most dominant single gas-chromatography-amenable compounds. Lower Cretaceous sediments on the central Exmouth Plateau (Sites 762 and 763) farther south in general have an organic matter composition similar to that in the Wombat Plateau sediments with the exception of a smaller particle size of vitrinites and inertinites, indicating more distal transport and probably deposition in deeper water. Nevertheless, organic matter preservation is slightly better than in the Triassic sediments. Long-chain fatty acids, as well as aliphatic ketones and alcohols, are common constituents in the Lower Cretaceous sediments in addition to n-alkanes and hopanoid hydrocarbons. Thin, black shale layers at the Cenomanian/Turonian boundary, although present at several sites (Sites 762 and 763 on the Exmouth Plateau, Site 765 in the Argo Abyssal Plain, and Site 766 on the continental margin of the Gascoyne Abyssal Plain), are particularly enriched in organic matter only at Site 763 (up to 26%). These organic-matter-rich layers contain mainly bituminite of probable fecal-pellet origin. Considering the high organic carbon content, the moderate hydrogen indices of 350-450 milligrams of hydrocarbon-type material per gram of Corg, the maceral composition, and the low sedimentation rates in the middle Cretaceous, we suggest that these black shales were accumulated in an area of oxygen-depleted bottom-water mass (oceanwide reduced circulation?) underlying an oxygen-rich water column (in which most of the primary biomass other than fecal pellets is destroyed) and a zone of relatively high bioproductivity. Differences in organic matter accumulation at the Cenomanian/Turonian boundary at different sites off northwest Australia are ascribed to regional variations in primary bioproductivity.
Resumo:
Bright red "jasperoids" were recovered at three positions during Leg 193 drilling below Roman Ruins (Site 1189) in the PACMANUS hydrothermal field. These do not represent fossil exhalative oxide deposits equivalent to those associated with sulfide chimneys at the Roman Ruins seafloor. Rather, they constitute an integral, relatively early stage involving oxidized fluids in the development of veins and breccias that characterize the mostly sulfidic stockwork zone intersected below Roman Ruins in Hole 1189B. They formed by growth of quartz in open spaces created by hydrofracturing, the characteristic feature being mostly euhedral cores dusted by tiny hematite flakes. In one occurrence there are also frondlike aggregates and possible earlier cavity linings of hematite, overgrown by quartz, that potentially formed by maturation of ferruginous gels first deposited in the openings. The trace element geochemistry of the jasperoids, apart from minor enrichment in uranium, provides no indication that they represent subsurface conduits for fluids that deposit Fe-Mn-Si at the seafloor, though this remains a possibility for some such deposits.
Resumo:
Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89-90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This "wedge serpentinite" presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (?110 km above slab) and the outer forearc serpentinite seamounts (~25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.
Resumo:
New petrological and geochemical data were obtained for basalts recovered during cruise 24 of the R/V "Akademik Nikolay Strakhov" in 2006. These results significantly contributed to the understanding of the formation of tholeiitic magmatism at the northern end of the Knipovich Ridge of the Polar Atlantic. Dredging was performed for the first time both in the rift valley and on the flanks of the ridge. It showed that the conditions of magmatism have not changed since at least 10 Ma. The basalts correspond to slightly enriched tholeiites, whose primary melts were derived at the shallowest levels and were enriched in Na and depleted in Fe (Na-TOR type). The most enriched basalts are typical of the earlier stages of the opening and were found on the flanks of the ridge in its northernmost part. Variations in the ratios of Sr, Nd, and Pb isotopes and lithophile elements allowed us to conclude that the primary melts generated beneath the spreading zone of the Knipovich Ridge were modified by the addition of the enriched component that was present both in the Neogene and Quaternary basalts of Spitsbergen Island. Compared with the primitive mantle, the extruding magmas were characterized by positive Nb and Zr anomalies and a negative Th anomaly. The formation of primary melts involved melting of the metasomatized depleted mantle reservoir that appeared during the early stages of opening of the Norwegian-Greenland Basin and transformation of the paleo-Spitsbergen Fault into the Knipovich spreading ridge, which was accompanied by magmatism in western Spitsbergen during its separation from the northern part of Greenland.
Resumo:
Originally, we had planned to piston core at Site 595 in order to meet the sedimentologic and biostratigraphic objectives outlined in the introductory chapter. However, consultation with our colleagues, Thomas Jordan and John Orcutt on board Melville, indicated that coring near the ocean bottom seismometer (OBS) array around Hole 595B could alter the programmed signal to noise ratio above which teleseisms trigger recording in the OBSs. They requested that we core no closer than about 8 km from three OBSs nearest Hole 595B, and selected a target for us about that distance to the west. Since a new beacon was required at this distance, a new site number, 596, was designated. Briefly, we planned to obtain oriented hydraulic piston cores to the top of the cherts, then core through the cherts using the extended core barrel (XCB) to basement. With improved recovery, we hoped to reach the sediment/basalt contact, and thus obtain a reliable biostratigraphic determination of the basement age. We planned to obtain at least one core in basement, perhaps more, with time permitting. We planned no geophysical program for the hole.
Resumo:
The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.
Resumo:
Approximately 5 m of aphyric to sparsely phyric basalt was recovered from Hole 581, the only hole on Leg 86 where basement was cored. The occurrence of samples with altered glassy rinds indicates that at least three cooling units (pillows or thin flows) were sampled. The samples were moderately to intensely altered; groundmass crystals are generally fresh, but all glass is altered. Alteration is greatest in vesicular samples, but most of the samples have fractures filled with iron oxyhydroxide, clay, and/or calcite. All 13 samples analyzed are moderately fractionated aluminous N-type mid-ocean ridge basalts. The samples can be divided into two groups based on TiO2 and FeO contents. The least-evolved group may be derived from a more primitive mid-ocean ridge basalt by the crystallization of 18% plagioclase, 24% clinopyroxene, and 3% olivine. The more evolved group may be derived from the first group by the fractionation of 18% plagioclase, 11% clinopyroxene, and 3% olivine. However, higher Ce/Yb ratios in the more evolved group cannot be produced by fractionation and thus we must invoke a more complex process such as dynamic melting to relate the two groups to a common source.
Resumo:
This paper presents data on trace elements (Sr, Mg, Na, K, Mn, Fe, Ni, Cr) and isotopes (13C, 18O) on the carbonate fraction of bulk sediments from the Coniacian to Paleocene samples of Hole 516F. Relationships of trace elements to mineralogy and stratigraphic position are discussed at length, with special emphasis on 1) the differences between Hole 516F and other oceanic sites, and 2) the transitions observed at the Cretaceous/Tertiary boundary. Isotope data are compared to those obtained in other localities of the same age. The sections show the same major 13C variations at the Cretaceous/Tertiary boundary, indicating that this event is a planetary phenomenon.