901 resultados para GC-MS analysis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Mediterranean species Cynara cardunculus L. is recognized in the traditional medicine, for their hepatoprotective and choleretic effects. Biomass of C. cardunculus L. var. altilis (DC), or cultivated cardoon, may be explored not only for the production of energy and pulp fibers, but also for the extraction of bioactive compounds. The chemical characterization of extractable components, namely terpenic and phenolic compounds, may valorize the cultivated cardoon plantation, due to their antioxidant, antitumoral and antimicrobial activities. In this study, the chemical composition of lipophilic and phenolic fractions of C. cardunculus L. var. altilis (DC), cultivated in the south of Portugal (Baixo Alentejo region) was characterized in detail, intending the integral valorization of its biomass. The biological activity of cultivated cardoon extracts was evaluated in terms of antioxidant, human tumor cell antiproliferative and antibacterial effects. Gas chromatography-mass spectrometry (GC-MS) was used for the chemical analysis of lipophilic compounds. Sixty-five lipophilic compounds were identified, from which 1 sesquiterpene lactone and 4 pentacyclic triterpenes were described, for the first time, as cultivated cardoon components, such as: deacylcynaropicrin, acetates of β- and α-amyrin, lupenyl acetate and ψ-taraxasteryl acetate. Sesquiterpene lactones were the major family of lipophilic components of leaves (≈94.5 g/kg), mostly represented by cynaropicrin (≈87.4 g/kg). Pentacyclic triterpenes were also detected, in considerably high contents, in the remaining parts of cultivated cardoon, especially in the florets (≈27.5 g/kg). Taraxasteryl acetate was the main pentacyclic triterpene (≈8.9 g/kg in florets). High pressure liquid chromatography-mass spectrometry (HPLC-MS) was utilized for the chemical analysis of phenolic compounds. Among the identified 28 phenolic compounds, eriodictyol hexoside was reported for the first time as C. cardunculus L. component, and 6 as cultivated cardoon components, namely 1,4-di-O-caffeoylquinic acid, naringenin 7-O-glucoside, naringenin rutinoside, naringenin, luteolin acetylhexoside and apigenin acetylhexoside. The highest content of the identified phenolic compounds was observed in the florets (≈12.6 g/kg). Stalks outer part contained the highest hydroxycinnamic acids abundance (≈10.3 g/kg), and florets presented the highest flavonoids content (≈10.3 g/kg). The antioxidant activity of phenolic fraction was examined through 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay. Stalks outer part, and receptacles and bracts extracts demonstrated the highest antioxidant effect on DPPH (IC50 of 34.35 μg/mL and 35.25 μg/mL, respectively). (cont.) abstract (cont.) The DPPH scavenging effect was linearly correlated with the total contents of hydroxycinnamic acids (r = -0.990). The in vitro antiproliferative activity of cultivated cardoon lipophilic and phenolic extracts was evaluated on a human tumor cells line of triple-negative breast cancer (MDA-MB-231), one of the most refractory human cancers to conventional therapeutics. After 48 h of exposition, leaves lipophilic extract showed higher inhibitory effect (IC50 = 10.39 μg/mL) than florets lipophilic extract (IC50 = 315.22 μg/mL), upon MDA-MB-231 cellular viability. Pure compound of cynaropicrin, representative of the main compound identified in leaves lipophilic extract, also prevented the cell proliferation of MDA-MB-231 (IC50 = 17.86 μM). MDA-MB-231 cells were much more resistant to the 48 h- treatment with phenolic extracts of stalks outer part (IC50 = 3341.20 μg/mL) and florets (IC50 > 4500 μg/mL), and also with the pure compound of 1,5-di-O-caffeoylquinic acid (IC50 = 1741.69 μM). MDA-MB-231 cells were exposed, for 48 h, to the respective IC50 concentrations of leaves lipophilic extract and pure compound of cynaropicrin, in order to understand their ability in modelling cellular responses, and consequently important potentially signaling pathways for the cellular viability decrease. Leaves lipophilic extract increased the caspase-3 enzymatic activity, contrarily to pure compound of cynaropicrin. Additionally, leaves lipophilic extract and pure compound of cynaropicrin caused G2 cell cycle arrest, possibly by upregulating the p21Waf1/Cip1 and the accumulation of phospho-Tyr15-CDK1 and cyclin B1. The inhibitory effects of leaves lipophilic extract and cynaropicrin pure compound, against the MDA-MB-231 cell proliferation, may also be related to the downregulation of phospho-Ser473-Akt. The antibacterial activity of cultivated cardoon lipophilic and phenolic extracts was assessed, for the first time, on two multidrug-resistant bacteria, such as the Gram-negative Pseudomonas aeruginosa PAO1 and the Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), two of the main bacteria responsible for health care-associated infections. Accordingly, the minimum inhibitory concentrations (MIC) were determined. Lipophilic and phenolic extracts of florets did not have antibacterial activity on P. aeruginosa PAO1 and MRSA (MIC > 2048 μg/mL). Leaves lipophilic extract did not prevent the P. aeruginosa PAO1 growth, but pure compound of cynaropicrin was slightly active (MIC = 2048 μg/mL). Leaves lipophilic extract and pure compound of cynaropicrin blocked MRSA growth (MIC of 1024 and 256 μg/mL, respectively). The scientific knowledge revealed in this thesis, either by the chemical viewpoint, or by the biological viewpoint, contributes for the valorization of C. cardunculus L. var. altilis (DC) biomass. Cultivated cardoon has potential to be exploited as source of bioactive compounds, in conciliation with other valorization pathways, and Portuguese traditional cheeses manufacturing.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the sixth leading cause of death in the US. Some researchers refer to AD as “Type III Diabetes” because of reported glucose metabolism dysfunction. Preclinical studies suggest increasing insulin decreases AD pathology, although the mechanism remains unclear. To sensitize insulin signaling, this study activated Peroxisome Proliferator-Activated Receptor Gamma using intranasal co-administration of pioglitazone (PGZ) and insulin. This method targeted the site of action to reduce peripheral effects and to maximize impact in transgenic mice expressing AD pathology. Data from GC-MS fluxomics analysis suggested that PGZ+Insulin increased glucose metabolism in the brain. Immunohistochemistry with relevant antibodies was used to identify AD pathological markers in the subiculum, indicating that PGZ+Insulin decreased pathology compared to Insulin and Saline. This suggests that increasing glucose uptake in the brain alleviated AD pathology, further clarifying the role of insulin signaling in AD pathology.Gemstone

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The first topic area of this thesis involved studies on the accumulation and translocation of glucosinolates (GSs), bioactive secondary plant compounds, in broccoli plants. Changes in GS accumulation and gene expression levels in response to exogeneous methyl jasmonate (MeJA) treatment were analyzed in different tissue types at different developmental stages of broccoli. Greater accumulation of GSs with MeJA treatment was observed in apical leaves of broccoli seedlings and florets of plants at harvest maturity. Increases in indolyl GS in apical leaves of seedlings and florets were coupled with the up-regulation of indolyl GS biosynthesis genes. The accumulation of indolyl GSs appears to be modulated by MeJA treatment in an organ-specific manner for optimal distribution of defense substances in the plant. Metabolic profiling of hydrophilic metabolites using GC-MS demonstrated increased accumulation of various phenolics, ascorbates and amino acids in broccoli tissues after MeJA treatment. Distinct changes in carbohydrate levels observed between different tissues (vegetative leaves and floret tissues) of broccoli plants after treatment suggest that carbon metabolism is differentially modulated by MeJA treatment in different tissue types depending on sink-source relationships. Reduced levels of hexose sugars and tricarboxylic acid intermediates after MeJA treatment may reflect the increased requirement for carbon and energy needed to drive secondary product biosynthesis to accumulate metabolites for defense against insects and other herbivores. Substantial increases of indolyl and aromatic GSs after exogenous treatment with MeJA in stem and petioles of seedlings and the existence of intact indolyl-GS forms in phloem exudates suggest enhanced de novo synthesis in combination with active transport. Indoly GSs share structural similarities with the auxin, IAA, and may interact with components of the auxin transport system for intra- and extra-cellular transport or translocation. Application of the auxin efflux inhibitor, 1-naphthylphthalamic acid (NPA) reduced MeJA-mediated accumulation of indolyl GSs in broccoli florets and seedling tissues. NPA did not inhibit expression of indolyl GS biosynthesis genes shown to be upregulated by MeJA treatment or the accumulation of tryptophan, the amino acid precursor of indolyl GSs. Exogenous application of benzyl GS to Arabidopsis roots induced ectopic expression of the PIN1 protein associated with the auxin transport system similar to treatment with NPA, again suggesting GS interaction with the auxin efflux carrier system. The inhibitory effect of NPA on MeJA-mediated accumulation of GS may be due to competitive binding of NPA to auxin efflux carrier components and that GS transport is mediated by the auxin transport system. The inhibitory effect of NPA on indolyl and aromatic GS accumulation and the bioactivity of exogenous treatment of these GS compounds in PIN1 localization, Arabidopsis root growth, and gravitrophic response suggest that indolyl and aromatic GSs may be antagonistic to IAA transport and biosynthesis. Indolyl and aromatic GSs can also be potentially converted into IAA by hydrolysis. This intrinsic feature of GSs may be the part of a sophisticated regulatory process where the metabolic pathways in the plant shift from active growth to a reversible defense posture in response to biotic or abiotic stress. It seems likely that indolyl and aromatic GSs are important compounds that provide connections between jasmonate and auxin signaling. Further studies are required to reveal the regulatory mechanism for crosstalk between the two hormones. The third part of this research was to investigate effect of selenium fertilization and MeJA treatment on accumulation of GSs in broccoli florets. Increasing dietary intake of the element selenium (Se) has been shown to reduce the risk of cancer. Simultaneous enhancement of both Se and GS concentrations in broccoli floret tissue were conducted through the combined treatment of MeJA with Se fertilization. A low level of Se fertilization (concentration) with MeJA treatment displayed no significant changes in total aliphatic GS concentrations with 90% and 50% increases in indolyl and total GSs concentrations, respectively. This result suggests that Se- and GS-enriched broccoli with improved health-promoting properties can be generated by this combined treatment. The second topic of this thesis was conducted to provide basic information required to improve biomass quality and productivity and develop tools for gene transformation in Miscanthus x giganteus. The perennial rhizomatous grass, Miscanthus x giganteus is an ideal biomass crop due to its rapid vegetative growth and high biomass yield potential. As a naturally occurring sterile hybrid, M. x giganteus must be propagated vegetatively by mechanicalling divided rhizomes or from micropropagated plantlets. The effect of callus type, age and culture methods on regeneration competence was studied to improve regeneration efficiency and shorten the period of tissue culture in M. x giganteus propagation. Seven lignin biosynthesis genes and one putative flowering gene were isolated from M. x giganteus by PCR reactions using maize othologous sequences. Southern hybridization and nuclear DNA content analysis indicated that the genes isolated from M. x giganteus exist in the genome of other Miscanthus species as multiple copies. Analysis of lignin content and histological staining of lignin deposition indicated that higher lignin content is found in mature stem node tissues compared to young leaves and apical stem nodal tissues. Cell wall lignification is associated with increasing tissue maturity in Miscanthus species. RNAi and antisense constructs harboring sequences of these genes were developed to generate Miscanthus transgenic plants with suppressed of lignin biosynthesis and delayed flowering.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os esteróis desempenham um papel fundamental nos processos fisiológicos de praticamente todos os organismos vivos. O esterol mais abundante nos seres humanos é o colesterol, o qual desempenha uma multiplicidade de funções desde a estrutural à sinalização. A extração e análise de esteróis no plasma é complexa devido à sua insolubilidade, sequestração dentro das lipoproteínas e à grande diferença entre cada tipo de esterol. Os autores apresentam a casuística referentes à análise de 13 esteróis e fitosteróis em plasma e líquido amniótico.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fish meat has a particular chemical composition which gives its high nutritional value. However, this food is identified for being highly perishable and this aspect is often named as a barrier to fish consumption. The southwestern Paraná region, parallel to the country's reality, it is characterized by low fish consumption; and one of the strategies aimed at increasing the consumption of this important protein source is encouraging the production of other species besides tilapia. Within this context, it is necessary to know about the meat characteristics. In this sense, the objective of this study was to evaluate the technological potential of pacu, grass carp and catfish species. To do so, at first, it was discussed the chemical and biometric assessment under two distinct descriptive statistical methods, of the three species; and it was also evaluated the discriminating capacity of the study. In a second moment, an evaluation of effects done by two different processes of washing (acid and alkaline) regarding the removal of nitrogen compounds, pigments and the emulsifying ability of the proteins contained in the protein base obtained. Finally, in the third phase, it was aimed to realize the methodology optimization in GC-MS for the analysis geosmin and MIB (2-metilisoborneol) compounds that are responsible for taste/smell of soil and mold in freshwater fish. The results showed a high protein and low lipid content for the three species. The comparison between means and medians revealed symmetry only for protein values and biometric measurements. Lipids, when evaluated only by the means, overestimate the levels for all species. Correlations between body measurements and fillet yield had low correlation, regardless of the species analyzed, and the best prediction equation relates the total weight and fillet weight. The biometric variables were the best discriminating among the species. The evaluation of the washings, it was found that the acidic and basic processes were equally (p ≥ 0.05) efficient (p ≤ 0.05) for the removal of nitrogen compounds on the fish pulps. Regarding the extraction of pigments, a removal efficiency was recorded only for the pacu species, the data were assessed by the parameters L *, a *, b *. When evaluated by the total color difference (ΔE) before and after washing for both processes (acid/alkaline) the ΔE proved feasible perceived by naked eye for all species. The catfish was characterized as the fish that presents the clearest meat with the basic washing considered the most effective in removing pigments for this species. Protein bases obtained by alkaline washes have higher emulsifying capacity (p ≤ 0.05) when compared to unwashed and washed in acid process pulps. The methodology applied for the quantification of MIB and geosmin, allowed to establish that the method of extraction and purification of analytes had low recovery and future studies should be developed for identification and quantification of MIB and geosmin on fish samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Baccharis oreophila Malme belongs to the Asteraceae family. In Brazil are reported 120 species of Baccharis, most located in the South and Southeast regions, the latter presents the highest prevalence, especially in the state of São Paulo. Asteraceae is well known for the production of essential oils, which are liquid, volatile and aromatic substances produced by plants specialized for metabolism possess antibacterial, antifungal, and antioxidant properties. Thus, this study aimed, perform chemical and evaluate the antimicrobial and antioxidant activity of essential oil from dried leaves of B. oreophila collected in winter in Piraquara, Paraná. Obtaining essential oil was given by hydrodistillation in Clevenger apparatus, in triplicate, and the analysis was done using a gas chromatograph coupled to mass spectrometry GC / MS. The identification of the components was made based on retention indices calculated from the co-injection of a series of n-alkanes, followed by comparison of their mass spectra with literature. The antimicrobial activity was assessed by disk diffusion method and microdilution. The antioxidant activity was evaluated by the methods DPPH equivalent Trolox, ABTS and FRAP equivalent Trolox equivalent ferrous sulfate. The essential oil showed 0.47% yield. They identified 57 components (89.38%), 1.51% were classified as hydrogenated monoterpenes, oxygenated monoterpenes 15.14%, 34.84% and 37.87% hydrogenated sesquiterpenes sesquiterpenes oxygenates. As the major components were detected kusimono (16.37%), spathulenol (16.12%), the δ-cadinene (5.68%) and bicyclogermacrene (4.09%). The antimicrobial activity of essential oil was performed for the microorganisms Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Candida albicans ATCC 18804 and Candida tropicalis ATCC 13803, the results showed that the essential oil showed activity against S. aureus Inhibitory Concentration minimum (CIM) 1250 g/mL. In the evaluation of antioxidant activity essential oil showed antioxidant potential for the three methods evaluated, with values of 1,468 m.mol.L-1, 7.126 m.mol.L-1 and 45.515 m.mol.L-1 for ABTS, DPPH and FRAP, respectively. These results demonstrate that the essential oil of B. oreophila showed antimicrobial potential against S. aureus and interesting antioxidant activity, especially for the reducing power of iron ion, demonstrating their potential for future industrial applications. It is important to emphasize that were not observed in the literature reports highlighting such biological properties of B. oreophila oil.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A poluição atmosférica é um dos principais factores de degradação da qualidade de vida da população. O conjunto BTEX (benzeno, tolueno, etilbenzeno e xilenos) constitui o grupo mais importante dos compostos orgânicos voláteis (VOCs) na atmosfera uma vez que participam na química da atmosfera e constituem um perigo para a saúde, nomeadamente o benzeno, por ser altamente cancerígeno. São maioritariamente libertados pelo tráfego automóvel. Neste trabalho foi determinada a concentração dos BTEX em nove pontos da cidade de Évora no período de 21 Março a 1 de Julho de 2009 tendo-se recorrido à técnica de amostragem passiva, com amostradores Radiello™, seguida de desadsorção líquida, usando CS2, e subsequente análise por GC-MS. A concentração de benzeno no ar da cidade de Évora não excedeu o valor legislado de 5 g/m3 neste período de amostragem, sendo as concentrações obtidas para os poluentes em geral muito baixas e na sua maioria inferiores ao LOQ do método analítico. ABSTRACT; Air pollution is the major factor in the degradation of the population quality of life. BTEX (benzene, toluene, ethylbenzene and xylenes) is the most important group of volatile organic compounds (VOCs) in the atmosphere because of their role in atmospheric chemistry and the risk they posed to human health, with benzene, being a highly carcinogenic compound. BTEX are released mainly by road traffic. Concentrations of BTEX were determined at nine sampling points in the city of Évora in the period from 21 March to 1 July 2009, using passive samplers Radiello™, followed by liquid desorption with CS2, and subsequent analysis by GC-MS. During the sampling period, the concentration of benzene in the outdoor air of Évora city did not exceed 5 g/m3, the maximum value admissible by legislation. The concentrations measured of the other pollutants were, in general, very low and mostly below the LOQ of the analytical method.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since the analysis of the lunar rocks and soil samples, brought to Earth by the Apollo missions, it is believed that the Moon has a waterless nature and also other volatile species are strongly depleted. Advancement in analysis techniques helped to identify water and other volatile species in lunar volcanic glasses. Additionally, recent lunar space missions detected water and volatile organic compounds in the region of the lunar poles where permanently shadowed craters are existing. All known lunar soil samples available on Earth come from the lunar near side, close to the equator. To verify the most recent measurement results and to enhance the knowledge of the geological history of the Moon it is of high interest to perform in situ measurements on the lunar poles. For this reason the Russian space agency, Roskosmos, developed aprogram for the scientific exploration of the lunar poles. The Gas Analysis Package (GAP) is part of the selected scientific payload aboard the Luna-Resurs Lander. This instrument uses pyrolytic cells and will apply laser spectroscopy, gas chromatography and mass spectrometry to detect and analyze volatile components trapped in the lunar soil. An existing ion optical design of a compact reflectron type time-of-flight mass spectrometer, originally built for the MEAP/P-BACE balloon mission, was chosen as a part of the GAP instrument. The scope of this thesis is the development of the interface between gas chromatography (GC) and this Neutral Gas Mass Spectrometer (NGMS) to perform coupled GC-MS measurements. In the first part of this thesis the interfacing concept was developed and verified by coupling the NGMS prototype to gas chromatography. The second part of this thesis is devoted to the development of the NGMS flight version.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: To evaluate the cytotoxic activity of chloroform and water root extracts of Albertisia papuana Becc. on T47D cell line and identify the volatile compounds of the extracts. Methods: The plant roots were extracted with chloroform and water using maceration and boiling methods, respectively. The cytotoxicity of the extracts on T47D were determined using 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Doxorubicin was used as reference drug in the cytotoxicity test while Probit analysis was used to calculate the Median Growth Inhibitory Concentration IC50 of the extracts. The volatile compounds in the chloroform and water root extracts were analyzed using Gas Chromatography-Mass Spectrophotometry GC-MS. Results: The IC50 of the chloroform and water extracts were 28.0 ± 6.0 and 88.0 ± 5.5 μg/mL, respectively whereas that of doxorubicin was 8.5 ± 0.1 μg/mL. GC-MS results showed that there were 46 compounds in the chloroform extract, out of which the five major components are ethyl linoleate (49.68 %), bicyclo (3.3.1) non-2-ene (29.29 %), ethyl palmitate (5.06 %), palmitic acid (3.67 %) and ethyl heptadecanoate (1.57 %).The water extract consisted of three compounds, butanoic acid (15.58 %); methyl cycloheptane (3.45 %), and methyl 2-O-methylpentofuranoside (80.96 %). Conclusion: The chloroform root extract of A. papuana Becc. had a fairly potent anticancer activity against breast cancer cells and may be further developed as an anticancer agent. Its major components were fatty acids and fatty acid esters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The oily sludge is a complex mix of hydrocarbons, organic impurities, inorganic and water. One of the major problems currently found in petroleum industry is management (packaging, storage, transport and fate) of waste. The nanomaterials (catalysts) mesoporous and microporous are considered promising for refining and adsorbents process for environment protection. The aim of this work was to study the oily sludge from primary processing (raw and treated) and vacuum residue, with application of thermal analyses technique (pyrolysis), thermal and catalytic pyrolysis with nanomaterials, aiming at production petroleum derived. The sludge and vacuum residue were analyzed using a soxhlet extraction system, elemental analysis, thin layer chromatography, thermogravimetry and pyrolysis coupled in gas chromatography/mass spectrometry (Py GC MS). The catalysts AlMCM-41, AlSBA-15.1 e AlSBA-15.2 were synthesized with molar ratio silicon aluminum of 50 (Si/Al = 50), using tetraethylorthosilicante as source of silicon and pseudobuhemita (AlOOH) as source of aluminum. The analyzes of the catalysts indicate that materials showed hexagonal structure and surface area (783,6 m2/g for AlMCM-41, 600 m2/g for AlSBA-15.1, 377 m2/g for AlSBA-15.2). The extracted oily sludge showed a range 65 to 95% for organic components (oil), 5 to 35% for inorganic components (salts and oxides) and compositions different of derivatives. The AlSBA-15 catalysts showed better performance in analyzes for production petroleum derived, 20% increase in production of kerosene and light gas oil. The energy potential of sludge was high and it can be used as fuel in other cargo processed in refinery

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human scent, or the volatile organic compounds (VOCs) produced by an individual, has been recognized as a biometric measurement because of the distinct variations in both the presence and abundance of these VOCs between individuals. In forensic science, human scent has been used as a form of associative evidence by linking a suspect to a scene/object through the use of human scent discriminating canines. The scent most often collected and used with these specially trained canines is from the hands because a majority of the evidence collected is likely to have been handled by the suspect. However, the scents from other biological specimens, especially those that are likely to be present at scenes of violent crimes, have yet to be explored. Hair, fingernails and saliva are examples of these types of specimens. In this work, a headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technique was used for the identification of VOCs from hand odor, hair, fingernails and saliva. Sixty individuals were sampled and the profiles of the extracted VOCs were evaluated to assess whether they could be used for distinguishing individuals. Preliminary analysis of the biological specimens collected from an individual (intra-subject) showed that, though these materials have some VOCs in common, their overall chemical profile is different for each specimen type. Pair-wise comparisons, using Spearman Rank correlations, were made between the chemical profiles obtained from each subject, per a specimen type. Greater than 98.8% of the collected samples were distinguished from the subjects for all of the specimen types, demonstrating that these specimens can be used for distinguishing individuals. Additionally, field trials were performed to determine the utility of these specimens as scent sources for human scent discriminating canines. Three trials were conducted to evaluate hair, fingernails and saliva in comparison to hand odor, which was considered the standard source of human odor. It was revealed that canines perform similarly to these alternative human scent sources as they do to hand odor implying that, though there are differences in the chemical profiles released by these specimens, they can still be used for the discrimination of individuals by trained canines.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates fast pyrolysis bio-oils produced from alkali-metal-impregnated biomass (beech wood). The impregnation aim is to study the catalytic cracking of the pyrolysis vapors as a result of potassium or phosphorus. It is recognized that potassium and phosphorus in biomass can have a major impact on the thermal conversion processes. When biomass is pyrolyzed in the presence of alkali metal cations, catalytic cracking of the pyrolysis liquids occurs in the vapor phase, reducing the organic liquids produced and increasing yields of water, char, and gas, resulting in a bio-oil that has a lower calorific value and an increased chance of phase separation. Beech wood was impregnated with potassium or phosphorus (K impregnation and P impregnation, respectively) in the range of 0.10-2.00 wt %. Analytical pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was used to examine the pyrolysis products during thermal degradation, and thermogravimetric analysis (TGA) was used to examine the distribution of char and volatiles. Both potassium and phosphorus are seen to catalyze the pyrolytic decomposition of biomass and modify the yields of products. 3-Furaldehyde and levoglucosenone become more dominant products upon P impregnation, pointing to rearrangement and dehydration routes during the pyrolysis process. Potassium has a significant influence on cellulose and hemicellulose decomposition, not just on the formation of levoglucosan but also other species, such as 2(5H)-furanone or hydroxymethyl-cyclopentene derivatives. Fast pyrolysis processing has also been undertaken using a laboratory-scale continuously fed bubbling fluidized-bed reactor with a nominal capacity of 1 kg h-1 at the reaction temperature of 525 °C. An increase in the viscosity of the bio-oil during the stability assessment tests was observed with an increasing percentage of impregnation for both additives. This is because bio-oil undergoes polymerization while placed in storage as a result of the inorganic content. The majority of inorganics are concentrated in the char, but small amounts are entrained in the pyrolysis vapors and, therefore, end up in the bio-oil.