938 resultados para G-proteins


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La resistencia de las plantas a los hongos necrótrofos como Plectosphaerella cucumerina es genéticamente compleja y depende de la activación coordinada de distintas rutas de señalización (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Entre éstas se encuentran las mediadas por la proteína G heterotrimérica, un complejo formado por tres subunidades (Gα, Gβ y Gγ) que regula tanto la respuesta de inmunidad a diferentes patógenos como distintos procesos de desarrollo (Temple and Jones, 2007). En esta Tesis hemos demostrado que, en Arabidopsis, el monómero funcional formado por las subunidades Gβ y Gγ1/Gγ2 es el responsable de la regulación de la respuesta de defensa, ya que mutantes nulos en estas subunidades (agb1 y agg1 agg2) presentan una alta susceptibilidad al hongo P. cucumerina. Además, hemos identificado varios aminoácidos (Q102, T188 y R235) de la proteína AGB1 esenciales en la interacción con los efectores correspondientes para la regulación de la respuesta inmune (Jiang et al, enviado). Para determinar las bases moleculares de la resistencia mediada por la proteína G heterotrimérica, llevamos a cabo un análisis transcriptómico comparativo entre los genotipos agb1 y Col-0, el cual reveló que la resistencia mediada por AGB1 no depende de rutas defensivas implicadas en la resistencia a hongos necrotrofos, como las mediadas por el ácido salicílico (SA), etileno (ET), jasmónico (JA) o ácido abscísico (ABA), o la ruta de biosíntesis de metabolitos derivados del triptófano. Este estudio mostró que un número significativo de los genes desregulados en respuesta a P. cucumerina en el genotipo agb1 respecto a las plantas silvestres codificaban proteínas con funciones relacionadas con la pared celular. La evaluación de la composición y estructura de la pared de los mutantes de las subunidades de la proteína G heterotrimérica reveló que los genotipos agb1 y agg1 agg2 presentaban alteraciones similares diferentes de las observadas en plantas silvestres Col-0, como una reducción significativa en el contenido de xilosa en la pared. Estos datos sugieren que la proteína G heterotrimérica puede modular la composición/estructura de la pared celular y contribuir, de esta manera, en la regulación de la respuesta inmune (Delgado- Cerezo et al, 2011). La caracterización del interactoma de la proteína G heterotrimérica corroboró la relevancia funcional que presenta en la regulación de la pared celular, ya que un número significativo de las interacciones identificadas estaban comprendidas por proteínas relacionadas directa o indirectamente con la biogénesis y remodelación de la pared celular (Klopffleisch et al, 2011). El papel en inmunidad de algunos de estos potenciales efectores ha sido validado mediante el análisis de la resistencia a P. cucumerina de los mutantes de pérdida de función correspondientes. Con el objetivo de caracterizar las rutas de señalización mediadas por AGB1 e identificar efectores implicados en esta señalización, llevamos a cabo una búsqueda de mutantes supresores de la susceptibilidad de agb1 a P. cucumerina, identificándose varios mutantes sgb (supressor of Gbeta). En esta Tesis hemos caracterizado en detalle el mutante sgb10, que presenta una activación constitutiva de las rutas de señalización mediadas por SA y JA+ET y suprime el fenotipo de susceptibilidad de agb1. SGB10 y AGB1 forman parte de rutas independientes en la regulación de la respuesta inmune, mientras que interaccionan de forma compleja en el control de determinados procesos de desarrollo. La mutación sgb10 ha sido cartografiada entre los genes At3g55010 y At3g56408, que incluye una región con 160 genes. ABSTRACT Plant resistance to necrotrophic fungi Plectosphaerella cucumerina is genetically complex and depends on the interplay of different signalling pathways (Llorente et al, 2005; Sanchez-Vallet et al, 2010). Among others, the heterotrimeric G protein complex has a relevant role. The G protein that is formed by three subunits (Gα, Gβ and Gγ) is a pleiotropic regulator of immune responses to different types of pathogens and developmental issues (Temple and Jones, 2007). Throughout the Thesis, we have demonstrated that Arabidopsis’ functional monomer formed by the Gβ and Gγ1/Gγ2 subunits is a key regulator of defense response, as null mutants (agb1 and agg1 agg2) are equally hypersusceptible to P. cucumerina infection. In addition we have identified several AGB1 aminoacids (Q102, T188 y R235) essentials to interact with specific effectors during the regulation of immune response (Jiang et al, sent).To determine the molecular basis of heterotrimeric G protein mediated resistance we have performed a microarray analysis with agb1-1 and wild type Col-0 plants before and after P. cucumerina challenge. A deep and exhaustive comparative transcriptomical analysis of these plants revealed that AGB1 mediated resistance does not rely on salicilic acid (SA), ethylene (ET), jasmonates (JA), abscisic acid (ABA) or triptophan derived metabolites biosynthesis. However the analysis revealed that a significant number of cell wall related genes are misregulated in the agb1 mutant after pathogen challenge when compared to wild-type plants. The analysis of cell wall composition and structure showed similar cell wall alterations between agb1 and agg1 agg2 mutants that are different from those of wild-type plants, so far the mutants present a significant reduction in xylose levels. All these results suggest that heterotrimeric G protein may regulate immune response through modifications in the cell wall composition/structure (Delgado-Cerezo et al, 2011). The characterization of Heterotrimeric G protein interactome revealed highly connected interactions between the G-protein core and proteins involved in cell wall composition or structure (Klopffleisch et al, 2011). To test the role in immunity of several effectors identified above, we have performed resistance analysis of corresponding null mutants against P. cucumerina. In order to characterize AGB1 mediated signalling pathway and identify additional effectors involved in AGB1-mediated immune response against P. cucumerina, we have performed a screening to isolate mutants with suppression of agb1 phenotype. One of the mutants, named sgb10, has been characterized during the Thesis. The mutant shows constitutive expression of SA, JA+ET-mediated defense signaling pathways to suppres agb1 hypersusceptibility. SGB10 and AGB1 proteins seem to be part of independent pathways in immunity, however its function during development remains unclear. At present, we have mapped the sgb10 mutation between At3g55010 and At3g56408 genes. This region contains 160 genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) G?-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of G?-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many cellular events depend on a tightly compartmentalized distribution of H+ ions across membrane-bound organelles. However, measurements of organelle pH in living cells have been scarce. Several mutants of the Aequorea victoria green fluorescent protein (GFP) displayed a pH-dependent absorbance and fluorescent emission, with apparent pKa values ranging from 6.15 (mutations F64L/S65T/H231L) and 6.4 (K26R/F64L/S65T/Y66W/N146I/M153T/V163A/N164H/H231L) to a remarkable 7.1 (S65G/S72A/T203Y/H231L). We have targeted these GFPs to the cytosol plus nucleus, the medial/trans-Golgi by fusion with galactosyltransferase, and the mitochondrial matrix by using the targeting signal from subunit IV of cytochrome c oxidase. Cells in culture transfected with these cDNAs displayed the expected subcellular localization by light and electron microscopy and reported local pH that was calibrated in situ with ionophores. We monitored cytosolic and nuclear pH of HeLa cells, and mitochondrial matrix pH in HeLa cells and in rat neonatal cardiomyocytes. The pH of the medial/trans-Golgi was measured at steady-state (calibrated to be 6.58 in HeLa cells) and after various manipulations. These demonstrated that the Golgi membrane in intact cells is relatively permeable to H+, and that Cl− serves as a counter-ion for H+ transport and likely helps to maintain electroneutrality. The amenability to engineer GFPs to specific subcellular locations or tissue targets using gene fusion and transfer techniques should allow us to examine pH at sites previously inaccessible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been widely reported that the small GTP-binding protein Rap1 has an anti-Ras and anti-mitogenic activity. Thus, it is generally accepted that a normal physiological role of Rap1 proteins is to antagonize Ras mitogenic signals, presumably by forming nonproductive complexes with proteins that are typically effectors or modulators of Ras. Rap1 is activated by signals that raise intracellular levels of cAMP, a molecule that has long been known to exert both inhibitory and stimulatory effects on cell growth. We have now tested the intriguing hypothesis that Rap1 could have mitogenic effects in systems in which cAMP stimulates cell proliferation. The result of experiments addressing this possibility revealed that Rap1 has full oncogenic potential. Expression of Rap1 in these cells results in a decreased doubling time, an increased saturation density, and an unusual anchorage-dependent morphological transformation. Most significantly, however, Rap1-expressing cells formed tumors when injected into nude mice. Thus, we propose that the view that holds Rap1 as an antimitogenic protein should be restricted and conclude that Rap1 is a conditional oncoprotein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vestigial, nonphotosynthetic plastid has been identified recently in protozoan parasites of the phylum Apicomplexa. The apicomplexan plastid, or “apicoplast,” is indispensable, but the complete sequence of both the Plasmodium falciparum and Toxoplasma gondii apicoplast genomes has offered no clue as to what essential metabolic function(s) this organelle might perform in parasites. To investigate possible functions of the apicoplast, we sought to identify nuclear-encoded genes whose products are targeted to the apicoplast in Plasmodium and Toxoplasma. We describe here nuclear genes encoding ribosomal proteins S9 and L28 and the fatty acid biosynthetic enzymes acyl carrier protein (ACP), β-ketoacyl-ACP synthase III (FabH), and β-hydroxyacyl-ACP dehydratase (FabZ). These genes show high similarity to plastid homologues, and immunolocalization of S9 and ACP verifies that the proteins accumulate in the plastid. All the putatively apicoplast-targeted proteins bear N-terminal presequences consistent with plastid targeting, and the ACP presequence is shown to be sufficient to target a recombinant green fluorescent protein reporter to the apicoplast in transgenic T. gondii. Localization of ACP, and very probably FabH and FabZ, in the apicoplast implicates fatty acid biosynthesis as a likely function of the apicoplast. Moreover, inhibition of P. falciparum growth by thiolactomycin, an inhibitor of FabH, indicates a vital role for apicoplast fatty acid biosynthesis. Because the fatty acid biosynthesis genes identified here are of a plastid/bacterial type, and distinct from those of the equivalent pathway in animals, fatty acid biosynthesis is potentially an excellent target for therapeutics directed against malaria, toxoplasmosis, and other apicomplexan-mediated diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an “orthogonal” suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino acid. To this end, eight mutations were introduced into tRNA2Gln based on an analysis of the x-ray crystal structure of the glutaminyl-tRNA aminoacyl synthetase (GlnRS)–tRNA2Gln complex and on previous biochemical data. The resulting tRNA satisfies the minimal requirements for the delivery of an unnatural amino acid: it is not acylated by any endogenous E. coli aminoacyl-tRNA synthetase including GlnRS, and it functions efficiently in protein translation. Repeated rounds of DNA shuffling and oligonucleotide-directed mutagenesis followed by genetic selection resulted in mutant GlnRS enzymes that efficiently acylate the engineered tRNA with glutamine in vitro. The mutant GlnRS and engineered tRNA also constitute a functional synthetase–tRNA pair in vivo. The nature of the GlnRS mutations, which occur both at the protein–tRNA interface and at sites further away, is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

I present results from an experiment on the dynamics of folding of a globular protein (bovine serum albumin). Employing a micro-mechanical technique, I perform the measurements on very few molecules (1–100). I observed a sequence of steps in time for both unfolding and refolding. The overall characteristic time of the process is thus built up of waiting times between successive steps. The pattern of steps is reproducible, demonstrating the existence of deterministic pathways for folding and unfolding. Certain symmetries in the patterns of steps may reflect the architecture of the protein’s structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nature of chaperone action in the eukaryotic cytosol that assists newly translated cytosolic proteins to reach the native state has remained poorly defined. Actin, tubulin, and Gα transducin are assisted by the cytosolic chaperonin, CCT, but many other proteins, for example, ornithine transcarbamoylase (OTC), a cytosolic homotrimeric enzyme of yeast, do not require CCT action. Here, we observe that yeast cytosolic OTC is assisted to its native state by the SSA class of yeast cytosolic Hsp70 proteins. In vitro, refolding of OTC diluted from denaturant was assisted by crude yeast cytosol and ATP and found to be directed by SSA1/2. In vivo, when OTC was induced in a temperature-sensitive SSA-deficient strain, it exhibited reduced specific activity, and nonnative subunits were detected in the soluble fraction. These findings indicate that, in vivo, the Hsp70 system assists in folding at least some newly translated cytosolic enzymes, most likely functioning in a posttranslational manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein aggregation is studied by following the simultaneous folding of two designed identical 20-letter amino acid chains within the framework of a lattice model and using Monte Carlo simulations. It is found that protein aggregation is determined by elementary structures (partially folded intermediates) controlled by local contacts among some of the most strongly interacting amino acids and formed at an early stage in the folding process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regulators of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Gi but not by Gs class α-subunits. All RGS proteins share a conserved 120-amino acid sequence termed the RGS domain. We have demonstrated that the RGS domains of RGS4, RGS10, and GAIP retain GTPase accelerating activity with the Gi class substrates Giα1, Goα, and Gzα in vitro. No regulatory activity of the RGS domains was detected for Gsα. Short deletions within the RGS domain of RGS4 destroyed GTPase activating protein activity and Giα1 substrate binding. Comparable protein–protein interactions between Giα1–GDP–AlF4− and the RGS domain or full-length RGS4 were detected using surface plasmon resonance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The insulin-like growth factor (IGF) binding proteins (IGFBPs) modulate the actions of the insulin-like growth factors in endocrine, paracrine, and autocrine settings. Additionally, some IGFBPs appear to exhibit biological effects that are IGF independent. The six high-affinity IGFBPs that have been characterized to date exhibit 40–60% amino acid sequence identity overall, with the most conserved sequences in their NH2 and COOH termini. We have recently demonstrated that the product of the mac25/IGFBP-7 gene, which shows significant conservation in the NH2 terminus, including an “IGFBP motif” (GCGCCXXC), exhibits low-affinity IGF binding. The closely related mammalian genes connective tissue growth factor (CTGF) gene, nov, and cyr61 encode secreted proteins that also contain the conserved sequences and IGFBP motifs in their NH2 termini. To ascertain if these genes, along with mac25/IGFBP-7, encode a family of low-affinity IGFBPs, we assessed the IGF binding characteristics of recombinant human CTGF (rhCTGF). The ability of baculovirus-synthesized rhCTGF to bind IGFs was demonstrated by Western ligand blotting, affinity cross-linking, and competitive affinity binding assays using 125I-labeled IGF-I or IGF-II and unlabeled IGFs. CTGF, like mac25/IGFBP-7, specifically binds IGFs, although with relatively low affinity. On the basis of these data, we propose that CTGF represents another member of the IGFBP family (IGFBP-8) and that the CTGF gene, mac25/IGFBP-7, nov, and cyr61 are members of a family of low-affinity IGFBP genes. These genes, along with those encoding the high-affinity IGFBPs 1–6, together constitute an IGFBP superfamily whose products function in IGF-dependent or IGF-independent modes to regulate normal and neoplastic cell growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptor activation leads to the membrane recruitment and activation of G protein-coupled receptor kinases, which phosphorylate receptors and lead to their inactivation. We have identified a novel G protein-coupled receptor kinase-interacting protein, GIT1, that is a GTPase-activating protein (GAP) for the ADP ribosylation factor (ARF) family of small GTP-binding proteins. Overexpression of GIT1 leads to reduced β2-adrenergic receptor signaling and increased receptor phosphorylation, which result from reduced receptor internalization and resensitization. These cellular effects of GIT1 require its intact ARF GAP activity and do not reflect regulation of GRK kinase activity. These results suggest an essential role for ARF proteins in regulating β2-adrenergic receptor endocytosis. Moreover, they provide a mechanism for integration of receptor activation and endocytosis through regulation of ARF protein activation by GRK-mediated recruitment of the GIT1 ARF GAP to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deamination of 5-methylcytosine residues in DNA gives rise to the G/T mismatched base pair. In humans this lesion is repaired by a mismatch-specific thymine DNA glycosylase (TDG or G/T glycosylase), which catalyzes specific excision of the thymine base through N-glycosidic bond hydrolysis. Unlike other DNA glycosylases, TDG recognizes an aberrant pairing of two normal bases rather than a damaged base per se. An important structural issue is thus to understand how the enzyme specifically targets the T (or U) residue of the mismatched base pair. Our approach toward the study of substrate recognition and processing by catalytic DNA binding proteins has been to modify the substrate so as to preserve recognition of the base but to prevent its excision. Here we report that replacement of 2′-hydrogen atoms with fluorine in the substrate 2′-deoxyguridine (dU) residue abrogates glycosidic bond cleavage, thereby leading to the formation of a tight, specific glycosylase–DNA complex. Biochemical characterization of these complexes reveals that the enzyme protects an ≈20-bp stretch of the substrate from DNase I cleavage, and directly contacts a G residue on the 3′ side of the mismatched U derivative. These studies provide a mechanistic rationale for the preferential repair of deaminated CpG sites and pave the way for future high-resolution studies of TDG bound to DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuronal Ca2+ channels are inhibited by a variety of transmitter receptors coupled to Go-type GTP-binding proteins. Go has been postulated to work via a direct interaction between an activated G protein subunit and the Ca2+ channel complex. Here we show that the inhibition of sensory neuron N-type Ca2+ channels produced by γ-aminobutyric acid involves a novel, rapidly activating tyrosine kinase signaling pathway that is mediated by Gαo and a src-like kinase. In contrast to other recently described G protein-coupled tyrosine kinase pathways, the Gαo-mediated modulation requires neither protein kinase C nor intracellular Ca2+. The results suggest that this pathway mediates rapid receptor-G protein signaling in the nervous system and support the existence of a previously unrecognized form of crosstalk between G protein and tyrosine kinase pathways.