993 resultados para G alpha olf
Resumo:
The omega-conotoxins from fish-hunting cone snails are potent inhibitors of voltage-gated calcium channels. The omega-conotoxins MVIIA and CVID are selective N-type calcium channel inhibitors with potential in the treatment of chronic pain. The beta and alpha(2)delta-1 auxiliary subunits influence the expression and characteristics of the alpha(1B) subunit of N-type channels and are differentially regulated in disease states, including pain. In this study, we examined the influence of these auxiliary subunits on the ability of the omega-conotoxins GVIA, MVIIA, CVID and analogues to inhibit peripheral and central forms of the rat N-type channels. Although the beta3 subunit had little influence on the on- and off-rates of omega-conotoxins, coexpression of alpha(2)delta with alpha(1B) significantly reduced on- rates and equilibrium inhibition at both the central and peripheral isoforms of the N-type channels. The alpha(2)delta also enhanced the selectivity of MVIIA, but not CVID, for the central isoform. Similar but less pronounced trends were also observed for N-type channels expressed in human embryonic kidney cells. The influence of alpha(2)delta was not affected by oocyte deglycosylation. The extent of recovery from the omega-conotoxin block was least for GVIA, intermediate for MVIIA, and almost complete for CVID. Application of a hyperpolarizing holding potential ( - 120 mV) did not significantly enhance the extent of CVID recovery. Interestingly, [R10K] MVIIA and [O10K] GVIA had greater recovery from the block, whereas [K10R] CVID had reduced recovery from the block, indicating that position 10 had an important influence on the extent of omega-conotoxin reversibility. Recovery from CVID block was reduced in the presence of alpha(2)delta in human embryonic kidney cells and in oocytes expressing alpha(1B-b). These results may have implications for the antinociceptive properties of omega-conotoxins, given that the alpha(2)delta subunit is up-regulated in certain pain states.
Resumo:
The role of protein kinase C (PKC) in glucose-stimulated insulin secretion (GSIS) is controversial. Using recombinant adenoviruses for overexpression of PKCalpha and PKCdelta, in both wild-type (WT) and kinase-dead (KD) forms, we here demonstrate that activation of these two PKCs is neither necessary nor sufficient for GSIS from batch-incubated, rat pancreatic islets. In contrast, responses to the pharmacologic activator 12-O-tetradecanoylphorbol-13-acetate (TPA) were reciprocally modulated by overexpression of the PKCalphaWT or PKCalphaKD but not the corresponding PKCdelta adenoviruses. The kinetics of the secretory response to glucose (monitored by perifusion) were not altered in either cultured islets overexpressing PKCalphaKD or freshly isolated islets stimulated in the presence of the conventional PKC (cPKC) inhibitor Go6976. However, the latter did inhibit the secretory response to TPA. Using phosphorylation state-specific antisera for consensus PKC phosphorylation sites, we also showed that (compared with TPA) glucose causes only a modest and transient functional activation of PKC (maximal at 2-5 min). However, glucose did promote a prolonged (15 min) phosphorylation of PKC substrates in the presence of the phosphatase inhibitor okadaic acid. Overall, the results demonstrate that glucose does stimulate PKCalphain pancreatic islets but that this makes little overall contribution to GSIS.
Resumo:
Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial. cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing a-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250,mu M) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100,mu M) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of a,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.
Resumo:
1,3-Phenyl shifts interconvert imidoylketenes 1 and alpha-oxoketenimines 2 and, likewise, alpha-oxoketenes 3 automerize by this 1,3-shift. These rearrangements usually take place in the gas phase under conditions of. ash vacuum thermolysis. Energy profiles calculated at the B3LYP/6-31G(d, p) and B3LYP/6311 + G(3df,2p)//B3LYP/6-31G(d,p) levels demonstrate that electron donating substituents ( D) in the migrating phenyl group and electron withdrawing ones ( W) in the non-migrating phenyl group, can stabilise the transition states TS1 and TS2 to the extent that activation barriers of ca. 100 kJ mol(-1) or less are obtained; i.e. enough to make these reactions potentially observable in solution at ordinary temperatures. The calculated transition state energies Delta G(TS1) show an excellent correlation with the Hammett constants sigma(p)(W) and sigma(p) +(D).
Resumo:
Endothelial cell apoptosis contributes to atherosclerosis and may be exacerbated by oxidative stress. Results from clinical trials using antioxidant supplementation are equivocal and could be enhanced by antioxidants with additional non-antioxidant properties such as a-lipoic acid and alpha-tocopherol. The aim of this study was to investigate the effects of these antioxidants on cytoprotective pathways and endothelial apoptosis. Endothelial cells were incubated with alpha-lipoic acid and alpha-tocopherol, alone or in combination, prior to incubation with H2O2 or staurosporine. alpha-lipoic acid pre-treatment alone increased caspase-3 activity in a dose-dependent manner. Both H2O2 and staurosporine increased DNA fragmentation and caspase-3 activity and pre-treatment of cells with a-lipoic acid and/or a-tocopherol failed to prevent stress-induced apoptosis. Neither antioxidant treatments nor apoptotic inducers alone altered expressions of BcI-2, Bax, HSP70 or pERK1/2 or pJNK. alpha-lipoic decreased pERK2 in staurosporine-treated cells in a dose-dependent manner. These findings indicate that pre-incubation with alpha-lipoic acid and alpha-tocopherol, alone or in combination, does not protect against oxidative- or non-oxidative-induced apoptosis in endothelial cells. Moreover, we have demonstrated a non-antioxidant, dose-dependent role of alpha-lipoic acid in caspase-3 and ERK2 activation. These data provide an insight and indicate caution in the use of high doses of alpha-lipoic acid as an antioxidant.
Resumo:
A key function of activated macrophages is to secrete proinflammatory cytokines such as TNF alpha; however, the intracellular pathway and machinery responsible for cytokine trafficking and secretion is largely undefined. Here we show that individual SNARE proteins involved in vesicle docking and fusion are regulated at both gene and protein expression upon stimulation with the bacterial cell wall component lipopolysaccharide. Focusing on two intracellular SNARE proteins, Vti1b and syntaxin 6 (Stx6), we show that they are up-regulated in conjunction with increasing cytokine secretion in activated macrophages and that their levels are selectively titrated to accommodate the volume and timing of post-Golgi cytokine trafficking. In macrophages, Vti1b and syntaxin 6 are localized on intracellular membranes and are present on isolated Golgi membranes and on Golgi-derived TNF alpha vesicles budded in vitro. By immunoprecipitation, we find that Vti1b and syntaxin 6 interact to form a novel intracellular Q-SNARE complex. Functional studies using overexpression of full-length and truncated proteins show that both Vti1b and syntaxin 6 function and have rate-limiting roles in TNF alpha trafficking and secretion. This study shows how macrophages have uniquely adapted a novel Golgi-associated SNARE complex to accommodate their requirement for increased cytokine secretion.
Resumo:
protein modulation of neuronal nicotinic acetylcholine receptor ( nAChR) channels in rat intrinsic cardiac ganglia was examined using dialyzed whole-cell and excised membrane patch-recording configurations. Cell dialysis with GTP gamma S increased the agonist affinity of nAChRs, resulting in a potentiation of nicotine-evoked whole-cell currents at low concentrations. ACh- and nicotine-evoked current amplitudes were increased approximately twofold in the presence of GTP gamma S. In inside-out membrane patches, the open probability (NPo) of nAChR-mediated unitary currents was reversibly increased fourfold after bath application of 0.2mM GTP gamma S relative to control but was unchanged in the presence of GDP gamma S. The modulation of nAChR-mediated whole- cell currents was agonist specific; currents evoked by the cholinergic agonists ACh, nicotine, and 1,1-dimethyl-4-phenylpiperazinium iodide, but not cytisine or choline, were potentiated in the presence of GTP gamma S. The direct interaction between G-protein subunits and nAChRs was examined by bath application of either G(o)alpha or G beta gamma subunits to inside-out membrane patches and in glutathione S-transferase pull-down and coimmunoprecipitation experiments. Bath application of 50 nM G beta gamma increased the open probability of ACh- activated single-channel currents fivefold, whereas G(o)alpha( 50 nM) produced no significant increase in NPo. Neuronal nAChR subunits alpha 3-alpha 5 and alpha 2 exhibited a positive interaction with G(o)alpha and G beta gamma, whereas beta 4 and alpha 7 failed to interact with either of the G-protein subunits. These results provide evidence for a direct interaction between nAChR and G-protein subunits, underlying the increased open probability of ACh-activated single-channel currents and potentiation of nAChR-mediated whole-cell currents in parasympathetic neurons of rat intrinsic cardiac ganglia.
Resumo:
Cyclic pentapepticles are not known to exist in a-helical conformations. CD and NMR spectra show that specific 20-membered cyclic pentapepticles, Ac-(cyclo-1,5) [KxxxD]-NH2 and Ac-(cyclo-2,6)R[KxxxD]-NH2, are highly a-helical structures in water and independent of concentration, TFE, denaturants, and proteases. These are the smallest a-helical peptides in water.
Resumo:
Objectives. Gene expression profiling has provided many insights into tumor progression but translation to clinical practice has been limited. We have previously identified a list of potential markers by the differences of expression profiling of seven matched head and neck cancer (HNSCC) tumors with autologous normal oral mucosa (NOM). Alpha B-crystallin (CRYAB) was in the top 5% of genes identified with statistically significant differences in expression between tumor and NOM at the mRNA level. The objective was to confirm this in routine paraffin sections at the protein level. Study Design: The level of alpha B-crystallin was determined in tumors of 62 HNSCC patients whose prognosis was known for 5 years. Methods. Immunohistochemical detection of alpha B-crystallin expression was performed on HNSCC paraffin sections. Results. Univariate survival analysis identified lack of alpha B-crystallin staining as an independent prognostic marker for disease-free interval (P < 0.001) and overall survival (P < 0.002) of HNSCC patients over the 5-year observation period. Notably, all 13 patients (100%), including 5 patients with nodal disease whose tumors lacked alpha B-crystallin had no recurrences (P < 0.001). Nineteen of 27 node-negative patients stained positive for alpha B-crystallin and seven of the 19 (36.8%) had recurrences. Conclusion: Presence or absence of expression of alpha B-crystallin was a powerful marker for prognosis in this series of patients.
Resumo:
Peroxisome proliferator-activated receptors are ligand-activated transcription factors with a potential role in cancer. We investigated peroxisome proliferator-activated receptor alpha expression in breast cancer cell lines and showed a relationship between mean peroxisome proliferator-activated receptor alpha and estrogen receptor alpha mRNA levels in estrogen receptor alpha positive breast cancer cells. Transfection of estrogen receptor alpha into the estrogen receptor alpha negative cell line, MDA-MB-231 decreased peroxisome proliferator-activated receptor a mRNA and conversely inhibition of estrogen receptor alpha by ICI-182 780 in estrogen receptor a positive, MCF-7 cells increased peroxisome proliferator-activated receptor a mRNA levels. Estrogen receptor alpha levels can be modulated by histone deacetylase inhibitors and such agents are in clinical trials for cancer treatment. We found the histone deacetylase inhibitor, sodium butyrate, increased peroxisome proliferator-activated receptor alpha mRNA levels within 4 h of treatment. Peroxisome proliferator-activated receptor a modulation was independent of estrogen receptor alpha, as a similar increase was observed in the estrogen receptor a negative MDA-MB-231 cells. To further investigate the relationship between sodium butyrate and peroxisome proliferator-activated receptor alpha expression, we created an MCF-7 cell line that conditionally over-expresses human peroxisome proliferator-activated receptor alpha. Over-expression of the peroxisome proliferator-activated receptor protected MCF-7 cells from sodium butyrate-mediated inhibition of proliferation and attenuated sodium butyrate-mediated induction of histone deacetylase 3 mRNA, indicating that elevated levels of peroxisome proliferator-activated receptor alpha may reduce the sensitivity of cells to histone deacetylase inhibitors. The estrogen receptor alpha dependence of peroxisome proliferator-activated receptor alpha levels may be significant since estrogen receptor alpha negative breast cancer cells are associated with a more aggressive phenotype. Our studies also suggest that peroxisome proliferator-activated receptor alpha levels may be a marker of breast cancer cell sensitivity to histone deacetylase inhibitors. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to determine the effects of dietary antioxidant supplementation with alpha-tocopherol and alpha-lipoic acid on cyclosporine A (cyclosporine)-induced alterations to erythrocyte and plasma redox balance. Rats were randomly assigned to either control, antioxidant (alpha-tocopherol 1000 IU/kg diet and alpha-lipoic acid 1.6 g/kg diet), cyclosporine (25 mg/kg/day), or cyclosporine + antioxidant treatments. Cyclosporine was administered for 7 days after an 8 week feeding period. Plasma was analysed for alpha-tocopherol, total antioxidant capacity, malondialdehyde, and creatinine. Erythrocytes were analysed for glutathione, methaemoglobin, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase, alpha-tocopherol and malondialdehye. Cyclosporine administration caused a significant decrease in superoxide dismutase activity (P < 0.05 control versus cyclosporine) and this was improved by antioxidant supplementation (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P < 0.05 control versus cyclosporine + antioxidant). Animals receiving cyclosporine and antioxidants showed significantly increased (P < 0.05) catalase activity compared to both groups not receiving cyclosporine. Cyclosporine administration induced significant increases in plasma malondialdehyde and creatinine concentration (P < 0.05 control versus cyclosporine). Antioxidant supplementation prevented the cyclosporine induced increase in plasma creatinine (P < 0.05 cyclosporine versus cyclosporine + antioxidant; P > 0.05 control versus cyclosporine + antioxidant), however, supplementation did not alter the cyclosporine induced increase in plasma malondialdehyde concentration (P > 0.05 cyclosporine versus cyclosporine + antioxidant). Antioxidant supplementation resulted in significant increases (P < 0.05) in plasma and erythrocyte alpha-tocopherol in both of the supplemented groups compared to non-supplemented groups. In conclusion, dietary supplementation with alpha-tocopherol and alpha-lipoic acid enhanced the erythrocyte antioxidant defence and reduced nephrotoxicity in cyclosporine treated animals.
Resumo:
The nutritive value of transgenic peas expressing an a-amylase inhibitor (alpha-Ail) was evaluated with broiler chickens. The effects of feeding transgenic peas on the development of visceral organs associated with digestion and nutrient absorption were also examined. The chemical composition of the conventional and the transgenic peas used in this study were similar. In the two feeding trials, that were conducted normal and transgenic peas were incorporated into a maize-soybean diet at concentrations up to 500 g kg(-1). The diets were balanced to contain similar levels of apparent metabolisable energy (AME) and amino acids. In the first trial, the birds were fed the diets from 3 to 17days post-hatching and with levels of transgenic peas at 250 g kg(-1) or greater there was a significant reduction in body weight but an increase in feed intake resulting in deceased feed conversion efficiency. In the second trial, in which the birds were fed diets containing 300 g kg(-1) transgenic peas until 40 days of age, growth performance was significantly reduced. It was also demonstrated that the ileal starch digestibility coefficient (0.80 vs 0.42) was significantly reduced in the birds fed transgenic peas. Determination of AME and ileal digestibility of amino acids in 5-week-old broilers demonstrated a significant reduction in AME (12.12 vs 5.08 MJ kg(-1) DM) in the birds fed the transgenic peas. The AME value recorded for transgenic peas reflected the lower starch digestibility of this line. Real digestion of protein and amino acids was unaffected by treatment. Expression of a-Ail in peas did not appear to affect bird health or the utilisation of dietary protein. However, the significant reduction in ileal digestion of starch in transgenic peas does reduce the utility of this feedstuff in monogastric diets where efficient energy utilisation is required. (c) 2006 Society of Chemical Industry.