985 resultados para Fungal endophytes
Resumo:
Ceratocystis fimbriata is a fungal pathogen which attacks several economically important plants, but occurs in host-associated, morphologically indistinguishable forms. In Brazil, this fungus seriously attacks mango trees (Mangifera indica), causing severe loss of yield. This work aimed to develop and characterize a novel set of microsatellite markers for this important pathogen, providing researchers with new molecular tools for the characterization of isolates. Twenty polymorphic primer pairs were designed from a microsatellite-enriched library. We tested the usefulness of these markers through genotyping thirteen isolates of the fungus. On average, 6.65 alleles per locus were detected, revealing the ability of this set of markers to characterize C. fimbriata isolates associated to mango and to other plant species.
Resumo:
The acyl-homoserine lactones (acyl-HSLs) produced by Methylobacterium mesophilicum isolated from orange trees infected with the citrus variegated chlorosis (CVC) disease have been studied, revealing the occurrence of six long-chain acyl-HSLs, i.e., the saturated homologues (S)-N-dodecanoyl (1) and (S)-N-tetradecanoyl-HSL (5), the uncommon odd-chain N-tridecanoyl-HSL (3), the new natural product (S)-N-(2E)-dodecenoyl-HSL (2), and the rare unsaturated homologues (S)-N-(7Z)-tetradecenoyl (4) and (S)-N-(2E,7Z)-tetradecadienyl-HSL (6). The absolute configurations of all HSLs were determined as 3S. Compounds 2 and 6 were synthesized for the first time. Antimicrobial assays with synthetic acyl-HSLs against Gram-positive bacterial endophytes co-isolated with M. mesophilicum from CVC-infected trees revealed low or no antibacterial activity.
Resumo:
Biological sources for the control of plant pathogenic fungi remain an important objective for sustainable agricultural practices. Actinomycetes are used extensively in the pharmaceutical industry and agriculture owing to their great diversity in enzyme production. In the present study, therefore, we evaluated chitinase production by endophytic actinomycetes and the potential of this for control of phytopathogenic fungi. Endophytic Streptomyces were grown on minimum medium supplemented with chitin, and chitinase production was quantified. The strains were screened for any activity towards phytopathogenic fungi and oomycetes by a dual-culture in vitro assay. The correlation between chitinase production and pathogen inhibition was calculated and further confirmed on Colletotrichum sublineolum cell walls by scanning electron microscopy. This paper reports a genetic correlation between chitinase production and the biocontrol potential of endophytic actinomycetes in an antagonistic interaction with different phytopathogens, suggesting that this control could occur inside the host plant. A genetic correlation between chitinase production and pathogen inhibition was demonstrated. Our results provide an enhanced understanding of endophytic Streptomyces and its potential as a biocontrol agent. The implications and applications of these data for biocontrol are discussed.
Resumo:
The diversity and beneficial characteristics of endophytic microorganisms have been studied in several host plants. However, information regal-ding naturally, occurring seed-associated endophytes and vertical transmission among different life-history stages of hosts is limited. Endophytic bacteria were isolated from seeds and seedlings of 10 Eucalyptus species and two hybrids. The results showed that endophytic bacteria, Such as Bacillus, Enterococcus, Paenibacillus and Methylobacterium, are vertically transferred from seeds to seedlings. In addition, the endophytic bacterium Pantoea agglomerans was tagged with the gfp gene, inoculated into seeds and further reisolated from seedlings. These results suggested it novel approach to change the profile of the plants, where the bacterium is a delivery vehicle for desired traits. This is the first report of an endophytic bacterial community residing in Eucalyptus seeds and the transmission of these bacteria from seeds to seedlings. The bacterial species reported ill this work have been described as providing benefits to host plants. Therefore, we Suggest that endophytic bacteria can be transmitted vertically from seeds to seedlings, assuring the support of the bacterial community in the host plant.
Resumo:
Pseudocercospora griseola (Sacc.) Crous &. Braun is a widespread fungal phytopathogen that is responsible for angular leaf spot in the common bean (Phaseolus vulgaris L.). A number of fungal phytopathogens have been shown to harbour mycoviruses, and this possibility was investigated in populations of Pseudocercospora griseola. The total nucleic acid extracts of 61 fungal isolates were subjected to agarose gel electrophoresis. Small fragments (800-4800 bp) could be identified in 42 of the samples. The presence of dsRNA in isolate Ig838 was confirmed by treatment of total nucleic acid with DNase, RNase A, and nuclease S I. Transmission electron microscopy revealed the presence of viral-like particles 40 nm in diameter in the mycelia of 2 fungal isolates, namely 29-3 and Ig838. The transmission of dsRNA by means of conidia was 100% for isolate 29-3, but there was loss of 1-6 fragments of dsRNA in monosporic colonies of isolate Ig848. Cycloheximide treatment failed to inhibit the mycovirus in isolate 29-3, but proved efficient in the elimination of the 2.2, 2.0, 1.8, 1.2 and 1.0 kb fragments in 2 colonies of isolate Ig848. The occurrence of a mycovirus in Pseudocercospora griseola was demonstrated for the first time in the present study.
Resumo:
The virulence of four Sporothrix schenckii isolates was compared in a murine model of sporotrichosis, together with the protein pattern of the yeast cell surface and the capacity to bind the extracellular matrix protein fibronectin. Virulence was determined by the mortality rate, fungal burden and histopathology. Two clinical isolates were more virulent for C57BL/6 mice, but no direct correlation was seen between virulence and the clinical or environmental origin of the isolates. The lowest virulence was observed for an isolate recovered from a patient with meningeal sporotrichosis. Although all isolates could effectively disseminate, the dissemination patterns were not similar. Using flow cytometry analysis, we investigated the interaction of all the strains with fibronectin, and showed that the binding capacity correlated with virulence. Western blot analysis of S. schenckii cell wall extracts revealed positive bands for fibronectin in the range of 3792 kDa. The 70 kDa adhesin was also recognized by a protective monoclonal antibody raised against a gp70 antigen of S. schenckii (mAb P6E7). Confocal microscopy confirmed the co-localization of fibronectin and mAb P6E7 on the yeast cell surface. To our knowledge, this is the first report identifying adhesins for fibronectin on the surface of this human pathogen.
Resumo:
Cell-mediated and innate immunity are considered the most important mechanisms of host defense against fungus infections. However, recent studies demonstrated that specific antibodies show different degrees of protection against mycosis. In a previous study, antigens secreted by Sporothrix schenckii induced a specific humoral response in infected animals, mainly against the 70-kDa molecule, indicating a possible participation of antibodies to this antigen in infection control. in the present study, an IgG1 mAb was produced against a 70-kDa glycoprotein of S. schenckii in order to better understand the effect of passive immunization of mice infected with S. schenckii. Results showed a significant reduction in the number of CFU in organs of mice when the mAb was injected before and during S. schenckii infection. Similar results were observed when T-cell-deficient mice were used. Moreover, in a second schedule treatment, the mAb was injected after infection was established, and again we observed a significant reduction in CFU associated with an increase of IFN-gamma production. Also, the 70-kDa antigen is shown to be a putative adhesin present on the surface of this fungus. In conclusion, we report for the first time the protective effect of a specific antibody against S. schenckii.
Resumo:
The frequency of opportunistic fungal infection has increased drastically, mainly in patients who are immunocompromised due to organ transplant, leukemia or HIV infection. In spite of this, only a few classes of drugs with a limited array of targets, are available for antifungal therapy. Therefore, more specific and less toxic drugs with new molecular targets is desirable for the treatment of fungal infections. In this context, searching for differences between mitochondrial mammalian hosts and fungi in the classical and alternative components of the mitochondrial respiratory chain may provide new potential therapeutic targets for this purpose.
Resumo:
Phosphate is an ion that is essential for fungal growth. The systems for inorganic phosphate (Pi) acquisition in eukaryotic cells (PHO) have been characterized as a low-affinity (that assures a supply of Pi at normal or high external Pi concentrations) and a high-affinity (activated in response to Pi starvation). Here, as an initial step to understand the PHO pathway in Aspergillus fumigatus, we characterized the PH080 homologue, PhoB(PHO80). We show that the Delta phoB(PHO80) mutant has a polar growth defect (i.e., a delayed germ tube emergence) and, by phenotypic and phosphate uptake analyses, establish a link between PhoB(PHO80), calcineurin and calcium metabolism. Microarray hybridizations carried out with RNA obtained from wild-type and Delta phoB(PHO80) mutant cells identify Afu4g03610 (phoD(PHO84)), Afu7g06350 (phoE(PHO89)), Afu4g06020 (phoC(PHO81)), and Afu2g09040 (vacuolar transporter Vtc4) as more expressed both in the Delta phoB(PHO80) mutant background and under phosphate-limiting conditions of 0.1 mM P-i. Epifluorescence microscopy revealed accumulation of poly-phosphate in Delta phoB(PHO80) vacuoles, which was independent of extracellular phosphate concentration. Surprisingly, a phoD(PHO84) deletion mutant is indistinguishable phenotypically from the corresponding wild-type strain. mRNA analyses suggest that protein kinase A absence supports the expression of PHO genes in A. fumigatus. Furthermore, Delta phoB(PHO80) and Delta phoD(PHO84) mutant are fully virulent in a murine low dose model for invasive aspergillosis. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The protein phosphatase calcineurin is an important mediator connecting calcium-dependent signalling to various cellular responses in multiple organisms. In fungi calcineurin acts largely through regulating Crz1p-like transcription factors. Here we characterize an Aspergillus fumigatus CRZ1 homologue, CrzA and demonstrate its mediation of cellular tolerance to increased concentrations of calcium and manganese. In addition to acute sensitivitiy to these ions, and decreased conidiation, the crzA null mutant suffers altered expression of calcium transporter mRNAs under high concentrations of calcium, and loss of virulence when compared with the corresponding complemented and wild-type strains. We use multiple expression analyses to probe the transcriptional basis of A. fumigatus calcium tolerance identifying several genes having calA and/or crzA dependent mRNA accumulation patterns. We also demonstrate that contrary to previous findings, the gene encoding the Aspergillus nidulans calcineurin subunit homologue, cnaA, is not essential and that the cnaA deletion mutant shares the morphological phenotypes observed in the corresponding A. fumigatus mutant, Delta calA. Exploiting the A. nidulans model system, we have linked calcineurin activity with asexual developmental induction, finding that CrzA supports appropriate developmental induction in a calcineurin and brlA-dependent manner in both species.
Resumo:
Farnesol (FOH) is a nonsterol isoprenold produced by dephosphorylanon of farnesyl pyrophosphate a catabolite of the cholesterol biosynthetic pathway These isoprenoids inhibit proliferation and induce apoptosis Here we show that Aspergillus nidulans MA encoding the apoptosis-Inducing factor (AIF)-like mitochondrial oxidoreductase plays a role in the function of the mitochondrial Complex I Additionally we demonstrated that ndeA B and ndiA encode external and internal alternative NADH dehydrogenases respectively that have a function in FOH resistance When exposed to FOH the Delta aifA and Delta ndeA strains have increased ROS production while Delta ndeB Delta ndeA Delta ndeB and Andul mutant strains showed the same ROS accumulation than in the absence of FOH We observed several compensatory mechanisms affecting the differential survival of these mutants to FOH (C) 2010 Elsevier Inc All rights reserved
Resumo:
P>Carbon dioxide (CO(2)) and its hydration product bicarbonate (HCO(3)-) are essential molecules in various physiological processes of all living organisms. The reversible interconversion between CO(2) and HCO(3)- is in equilibrium. This reaction is slow without catalyst, but can be rapidly facilitated by Zn2+-metalloenzymes named carbonic anhydrases (CAs). To gain an insight into the function of multiple clades of fungal CA, we chose to investigate the filamentous fungi Aspergillus fumigatus and A. nidulans. We identified four and two CAs in A. fumigatus and A. nidulans, respectively, named cafA-D and canA-B. The cafA and cafB genes are constitutively, strongly expressed whereas cafC and cafD genes are weakly expressed but CO(2)-inducible. Heterologous expression of the A. fumigatus cafB, and A. nidulans canA and canB genes completely rescued the high CO(2)-requiring phenotype of a Saccharomyces cerevisiae Delta nce103 mutant. Only the Delta cafA Delta cafB and Delta canB deletion mutants were unable to grow at 0.033% CO(2), of which growth defects can be restored by high CO(2). Defects in the CAs can affect Aspergilli conidiation. Furthermore, A. fumigatus Delta cafA, Delta cafB, Delta cafC, Delta cafD and Delta cafA Delta cafB mutant strains are fully virulent in a low-dose murine infection.
Resumo:
Glycoprotein gp70 is an important intracellular antigen from Paracoccidioides brasillensis that elicits both humoral and cellular immune responses. Herein, the PbGP70 gene cloning from isolate Pb18 using internal peptide sequence information is reported. The deduced protein sequence bears two N-glycosylation sites, antigenic sites and two mouse T-cell epitopes. Anti-recombinant gp70 (rPbgp70) polyclonal antibodies reacted with a 70-kDa component in total cell extract of A brasiliensis, while MAbC5F11 and paracoccidioiclomycosis patients` sera recognized rPbgp70. Confocal microscopy with anti-rPbgp70 and MAbC5F11 showed intense staining and cytoplasmatic co-localization. The protein sequence belongs to the flavoprotein monooxygenase family which groups important anti-oxidative bioactive compounds. We found increased PbGP70 transcript accumulation under oxidative stress induced by H(2)O(2), during fungal growth and in macrophage phagocyted/bound yeasts. Therefore, gp70 might play a dual role in P. brasiliensis by both eliciting immune cellular and humoral responses in the host and protecting the fungus from oxidative stress generated by phagocytic cells. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Paracoccidioides brasiliensis is characterized by a multiple budding phenotype and a polymorphic cell growth, leading to the formation of cells with extreme variations in shape and size. Since Cdc42 is a pivotal molecule in establishing and maintaining polarized growth for diverse cell types, as well as during pathogenesis of certain fungi, we evaluated its role during cell growth and virulence of the yeast-form of P. brasiliensis. We used antisense technology to knock-down PbCDC42`s expression in P. brasiliensis yeast cells, promoting a decrease in cell size and more homogenous cell growth, altering the typical polymorphism of wild-type cells. Reduced expression levels also lead to increased phagocytosis and decreased virulence in a mouse model of infection. We provide genetic evidences underlying Pbcdc42p as an important protein during host-pathogen interaction and the relevance of the polymorphic nature and cell size in the pathogenesis of P. brasiliensis. (C) 2009 Elsevier Inc. All rights reserved.