973 resultados para Field Admitting (one-dimensional) Local Class Field Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main difficulties in studying quantum field theory, in the perturbative regime, is the calculation of D-dimensional Feynman integrals. In general, one introduces the so-called Feynman parameters and, associated with them, the cumbersome parametric integrals. Solving these integrals beyond the one-loop level can be a difficult task. The negative-dimensional integration method (NDIM) is a technique whereby such a problem is dramatically reduced. We present the calculation of two-loop integrals in three different cases: scalar ones with three different masses, massless with arbitrary tensor rank, with and N insertions of a two-loop diagram.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The matching of the BPS part of the (super) membrane's spectrum enables one to obtain membrane's results via string calculations. We compute the thermodynamic behavior at large coupling constant by considering M-theory on a manifold with topology T-2 X R-9. In the small coupling limit of M-theory the entropy coincides with the standard entropy of type IIB strings. We claim that the finite temperature partition functions associated with BPS p-brane spectrum can be analytically continued to well-defined functionals. This means that finite temperature can be introduced in brane theory. For the point particle limit (p --> 0) the entropy has the standard behavior of thermodynamic quantities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a (3+1)-dimensional local field theory defined on the sphere S-2. The model possesses exact soliton solutions with nontrivial Hopf topological charges and an infinite number of local conserved currents. We show that the Poisson bracket algebra of the corresponding charges is isomorphic to that of the area-preserving diffeomorphisms of the sphere S-2. We also show that the conserved currents under consideration are the Noether currents associated to the invariance of the Lagrangian under that infinite group of diffeomorphisms. We indicate possible generalizations of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feynman diagrams are the best tool we have to study perturbative quantum field theory. For this very reason the development of any new technique that allows us to compute Feynman integrals is welcome. By the middle of the 1980s, Halliday and Ricotta suggested the possibility of using negative-dimensional integrals to tackle the problem. The aim of this work is to revisit the technique as such and check on its possibilities. For this purpose, we take a box diagram integral contributing to the photon-photon scattering amplitude in quantum electrodynamics using the negative-dimensional integration method. Our approach enables us to quickly reproduce the known results as well as six other solutions as yet unknown in the literature. These six new solutions arise quite naturally in the context of negative-dimensional integration method, revealing a promising technique to handle Feynman integrals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new theoretical results on the spectrum of the quantum field theory of the double sine-Gordon model. This non-integrable model displays different varieties of kink excitations and bound states thereof. Their mass can be obtained by using a semiclassical expression of the matrix elements of the local fields. In certain regions of the coupling-constants space the semiclassical method provides a picture which is complementary to the one of the form factor perturbation theory, since the two techniques give information about the mass of different types of excitations. In other regions the two methods are comparable, since they describe the same kind of particles. Furthermore, the semiclassical picture is particularly suited to describe the phenomenon of false vacuum decay, and it also accounts in a natural way the presence of resonance states and the occurrence of a phase transition. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the behavior of the renormalized sextic coupling at the intermediate and strong coupling regime for the phi(4) theory defined in d = 2 dimensions. We found a good agreement with the results obtained by the field-theoretical renormalization-group in the Ising limit. In this work we use the lattice regularization method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the (lambda/4!)phi(4) massless scalar field theory in a four-dimensional Euclidean space, where all but one of the coordinates are unbounded. We are considering Dirichlet boundary conditions in two hyperplanes, breaking the translation invariance of the system. We show how to implement the perturbative renormalization up to two-loop level of the theory. First, analyzing the full two and four-point functions at the one-loop level, we show that the bulk counterterms are sufficient to render the theory finite. Meanwhile, at the two-loop level, we must also introduce surface counterterms in the bare Lagrangian in order to make finite the full two and also four-point Schwinger functions. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by analytic results obtained for a systematic expansion of the memory kernel in dissipative quantum mechanics, we propose a phenomenological procedure to incorporate non-markovian corrections to the Langevin dynamics of an order parameter in field theory systematically. In this note, we restrict our analysis to the onset of the evolution. As an example, we consider the process of phase conversion in the chiral transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the causal approach to (2 + 1)-dimensional quantum electrodynamics yields a well-defined perturbative theory. In particular, and in contrast to renormalized perturbative quantum field theory, it is free of any ambiguities and ascribes a nonzero value to the dynamically generated, nonperturbative photon mass. (C) 1994 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient non-Darcy forced convection on a flat plate embedded in a porous medium is investigated using the Forchheimer-extended Darcy law. A sudden uniform pressure gradient is applied along the flat plate, and at the same time, its wall temperature is suddenly raised to a high temperature. Both the momentum and energy equations are solved by retaining the unsteady terms. An exact velocity solution is obtained and substituted into the energy equation, which then is solved by means of a quasi-similarity transformation. The temperature field can be divided into the one-dimensional transient (downstream) region and the quasi-steady-state (upstream) region. Thus the transient local heat transfer coefficient can be described by connecting the quasi-steady-state solution and the one-dimensional transient solution. The non-Darcy porous inertia works to decrease the velocity level and the time required for reaching the steady-state velocity level. The porous-medium inertia delays covering of the plate by the steady-state thermal boundary layer. © 1990.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In analogy with the Liouville case we study the sl3 Toda theory on the lattice and define the relevant quadratic algebra and out of it we recover the discrete W3 algebra. We define an integrable system with respect to the latter and establish the relation with the Toda lattice hierarchy. We compute the relevant continuum limits. Finally we find the quantum version of the quadratic algebra.