836 resultados para Femtosecond filamentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of comparative numerical study of femtosecond laser inscription for fundamental and second harmonic of Yb-doped laser. We have found that second harmonic is more efficient in terms of amount of absorbed energy which leads to lower inscription threshold. Hence this regime is more attractive for applications in femtosecond laser microfabrication. We observed the different size of modified domain on initial pulse energy and different spectrum dynamics during the pulse propagation for fundamental and second harmonics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of numerical studies of the impact of asymmetric femtosecond pulses focused in the bulk of the material on the femtosecond modification of fused silica. It is shown that such pulses lead to localisation of absorption in the process of femtosecond modification and to a decrease in the threshold energy of modification. It is found that the optimal asymmetry parameters for reaching the maximum plasma density in the focusing region depend on the pulse energy: at an initial energy of about 100 nJ, it is preferable to use pulses with positive TOD; however, when the energy is increased, it is preferable to use pulses with negative TOD. This is explained by differences in the dynamics of the processes of absorption of energy of a pulse propagating in the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of numerical modelling of energy deposition in single-shot femtosecond laser inscription for fundamental and second harmonics, which shows that second harmonic is more efficient considering the amount of absorbed energy

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of comparative numerical study of energy deposition in single shot femtosecond laser inscription for fundamental and second harmonic of Yb-doped fiber laser. We have found that second harmonic is more efficient in absorbing energy which leads to lower inscription threshold. Hence this regime is more attractive for applications in femtosecond laser microfabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoclinic RbPb2Cl5:Dy single crystal was tested for femtosecond laser writing at wavelength of 800nm. Dependence of permanent refractive index change upon input pulse energy was investigated. Non-linear coefficients of multiphoton absorption and self-focusing were measured. Kerr non-linear coefficient was found to be as high as 4.0*10-6 cm2/GW.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A femtosecond laser has been used to asymmetrically modify the cladding of fiber containing long-period gratings. Following modification, devices in single-mode fiber are shown to be capable of sensing the magnitude and direction of bending in one plane by producing blue and red wavelength shifts depending upon the orientation of the bend. The resulting curvature sensitivities were -1.62 and +3.82 nm·m. Devices have also been produced using an elliptical core fiber to study the effects of the cladding modification on the two polarization eigenstates. A cladding modification applied on the fast axis of the fiber is shown to affect the light in the fast axis much more significantly than the light in the orthogonal state; this behavior may ultimately lead to a sensor capable of detecting the direction of bending in two dimensions for applications in shape sensing. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of comparative numerical study of energy deposition in single shot femtosecond laser inscription for fundamental and second harmonic of Yb-doped fiber laser. We have found that second harmonic is more efficient in absorbing energy which leads to lower inscription threshold. Hence this regime is more attractive for applications in femtosecond laser microfabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present recent results on experimental micro-fabrication and numerical modeling of advanced photonic devices by means of direct writing by femtosecond laser. Transverse inscription geometry was routinely used to inscribe and modify photonic devices based on waveguiding structures. Typically, standard commercially available fibers were used as a template with a pre-fabricated waveguide. Using a direct, point-by-point inscription by infrared femtosecond laser, a range of fiber-based photonic devices was fabricated including Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG). Waveguides with a core of a couple of microns, periodic structures, and couplers have been also fabricated in planar geometry using the same method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single- and multi-core passive and active germanate and tellurite glass fibers represent a new class of fiber host for in-fiber photonics devices and applications in mid-IR wavelength range, which are in increasing demand. Fiber Bragg grating (FBG) structures have been proven as one of the most functional in-fiber devices and have been mass-produced in silicate fibers by UV-inscription for almost countless laser and sensor applications. However, because of the strong UV absorption in germanate and tellurite fibers, FBG structures cannot be produced by UVinscription. In recent years femtosecond (fs) lasers have been developed for laser machining and microstructuring in a variety of glass fibers and planar substrates. A number of papers have been reported on fabrication of FBGs and long-period gratings in optical fibers and also on the photosensitivity mechanism using 800nm fs lasers. In this paper, we demonstrate for the first time the fabrication of FBG structures created in passive and active single- and three-core germanate and tellurite glass fibers by using 800nm fs-inscription and phase mask technique. With a fs peak power intensity in the order of 1011W/cm2, the FBG spectra with 2nd and 3rd order resonances at 1540nm and 1033nm in a single-core germanate glass fiber and 2nd order resonances between ~1694nm and ~1677nm with strengths up to 14dB in all three cores of three-core passive and active tellurite fibers were observed. Thermal and strain properties of the FBGs made in these mid-IR glass fibers were characterized, showing an average temperature responsivity of ~20pm/°C and a strain sensitivity of 1.219±0.003pm/µe.