938 resultados para Feed handling
Resumo:
Weaning is an important and complex step involving many stresses that interfere deeply with feed intake, gastro-intestinal tract (GIT) development and adaptation to the weaning diet in young pigs. The health of the pig at weaning, its nutrition in the immediate post-weaning period, and the physical, microbiological and psychological environment are all factors that interact to determine food intake and subsequent growth. GIT disorders, infections and diarrhoea increase at the time of weaning, in fact pathogens such as enterotoxigenic Escherichia coli (ETEC) are major causes of mucosal damage in post-weaning disease contributing to diarrhoea in suckling and post-weaned pigs. The European ban in 2006 put on antibiotic growth promoters (AGP) has stimulated research on the mechanisms of GIT disorders and on nutritional approaches for preventing or reducing such disturbances avoiding AGPs. Concerning these aspects here are presented five studies based on the interplay among nutrition, genomic, immunity and physiology with the aim to clarify some of these problematic issues around weaning period in piglets. The first three evaluate the effects of diets threonine or tryptophan enriched on gut defence and health as possible alternatives to AGP in the gut. The fourth is focused on the possible immunological function related with the development of the stomach. The fifth is a pilot study on the gastric sensing and orexygenic signal given by fasting or re-feeding conditions. Although some results are controversial, it appears that both tryptophan and threonine supplementation in weaning diets have a preventive role in E.coli PWD and favorable effects in the gut especially in relation to ETEC susceptible genotype. While the stomach is believed as almost aseptic organ, it shows an immune activity related with the mucosal maturation. Moreover it shows an orexygenic role of both oxyntic mucosa and pyloric mucosa, and its possible relation with nutrient sensing stimuli.
Resumo:
Un noto centro di ricerca europea ha recentemente modificato un jet convenzionale di classe CS-25 in una piattaforma scientifica. Durante il processo di certificazione delle modifiche, l’impatto delle stesse sulle prestazioni è stato studiato in modo esaustivo. Per lo studio delle qualità di volo, i piloti collaudatori hanno sviluppato una procedura di certificazione ad hoc che consiste in test qualitativi separati della stabilità longitudinale, laterale e direzionale. L’obiettivo della tesi è analizzare i dati di volo, registrati durante i test di collaudo, con l'obiettivo di estrarre informazioni di carattere quantitativo circa la stabilità longitudinale del velivolo modificato. In primo luogo sono state analizzate tre diverse modifiche apportate all’aeromobile e successivamente i risultati sono stati messi a confronto per capirne l’influenza sulle qualità di volo dell’aeromobile. Le derivate aerodinamiche sono state stimate utilizzando la cosiddetta “identificazione dei parametri”, che mira a replicare le variabili registrate durante i test di volo, variando un dato insieme di coefficienti all’interno del modello linearizzato della dinamica dell’aeromobile. L'identificazione del modo di corto periodo ha consentito l'estrazione dei suoi parametri caratteristici, quali il rapporto di smorzamento e la frequenza naturale. La procedura ha consentito inoltre di calcolare il cosiddetto “Control Anticipation Parameter” (CAP), parametro caratterizzante delle qualità di volo di un aeroplano. I risultati ottenuti sono stati messi a confronto con i requisiti prescritti dalla normativa MIL-STD-1797-A, risultando conformi al livello più alto di qualità di volo.
Resumo:
User interfaces are key properties of Business-to-Consumer (B2C) systems, and Web-based reservation systems are an important class of B2C systems. In this paper we show that these systems use a surprisingly broad spectrum of different approaches to handling temporal data in their Web inter faces. Based on these observations and on a literature analysis we develop a Morphological Box to present the main options for handling temporal data and give examples. The results indicate that the present state of developing and maintaining B2C systems has not been much influenced by modern Web Engi neering concepts and that there is considerable potential for improvement.
Resumo:
Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.
Resumo:
The following case report describes a selenium toxicosis in a pig-fattening farm of two finisher groups. The diseased animals partly showed ataxia and paresis or intense lameness in connection with band-like ablation of the epidermis at the coronary band. Some of them suffered from alopecia. Foot-and-mouth disease and swine vesicular disease were excluded by serological tests. Dissection revealed a multifocal bilateral symmetric poliomyelomalacia. Histological changes in the claws ranged from severe cell-decay in the germinative layer to distinctive decay of the stratum corneum. Due to damage of the claw epidermis the corium was partly exposed. Feed analysis revealed 100-fold increased selenium content in the finishing premix from the feed mill and as a result 20- to 60-fold increased selenium values in feed samples from the farm-made finisher mixture. Selenium concentration in the blood of diseased animals was 4- to 10-fold higher than normal values, which confirmed the tentative diagnosis of a selenium toxicosis.
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
Recent developments in vehicle steering systems offer new opportunities to measure the steering torque and reliably estimate the vehicle sideslip and the tire-road friction coefficient. This paper presents an approach to vehicle stabilization that leverages these estimates to define state boundaries that exclude unstable vehicle dynamics and utilizes a model predictive envelope controller to bound the vehicle motion within this stable region of the state space. This approach provides a large operating region accessible by the driver and smooth interventions at the stability boundaries. Experimental results obtained with a steer-by-wire vehicle and a proof of envelope invariance demonstrate the efficacy of the envelope controller in controlling the vehicle at the limits of handling.
Resumo:
In order to determine a stress response, two groups of twenty male golden hamsters were either exposed to a ferret or handled by a human. The hamsters' body temperature and running wheel activity were measured as stress correlates. Half of the hamsters' cages were equipped with a functional running wheel to determine whether the presence of a running wheel might reduce stress. Exposure to the ferret was followed by a significant increase in body temperature and running wheel revolutions: however, running wheel activity did not change after handling. Body temperature increased less after handling in hamsters living in a cage with a functional running wheel than in those with a non-revolving running wheel. This suggests that hamsters with a functional running wheel reacted less strongly to acute stress caused by handling. On the other hand, temperature increase after the exposure to a ferret was not affected by the presence of a running wheel. Both exposure to a ferret and handling caused stress in golden hamsters, as demonstrated by an increase in body temperature (emotional fever). Stress caused by handling was much milder than stress caused by the ferret. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
G-protein-coupled receptor kinase 2 (GRK2) is a primary regulator of β-adrenergic signaling in the heart. G-protein-coupled receptor kinase 2 ablation impedes heart failure development, but elucidation of the cellular mechanisms has not been achieved, and such elucidation is the aim of this study.
Resumo:
The hypothalamic-pituitary system controls homeostasis during feed energy reduction. In order to examine which pituitary proteins and hormone variants are potentially associated with metabolic adaptation, pituitary glands from ad libitum and energy restrictively fed dairy cows were characterized using RIA and 2-DE followed by MALDI-TOF-MS. We found 64 different spots of regulatory hormones: growth hormone (44), preprolactin (16), luteinizing hormone (LH) (1), thyrotropin (1), proopiomelanocortin (1) and its cleavage product lipotropin (1), but none of these did significantly differ between feeding groups. Quantification of total pituitary LH and prolactin concentrations by RIA confirmed the results obtained by proteome analysis. Also, feed energy restriction provoked increasing non-esterified fatty acid, decreasing prolactin, but unaltered glucose, LH and growth hormone plasma concentrations. Energy restriction decreased the expression of glial fibrillary acidic protein, triosephosphate isomerase, purine-rich element-binding protein A and elongation factor Tu, whereas it increased expression of proline synthetase co-transcribed homolog, peroxiredoxin III, beta-tubulin and annexin A5 which is involved in the hormone secretion process. Our results indicate that in response to feed energy restriction the pituitary reservoir of all posttranslationally modified hormone forms remains constant. Changing plasma hormone concentrations are likely attributed to a regulated releasing process from the gland into the blood.