977 resultados para Feature space


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo planteamos una aproximación a la idea de espacio público como articulador del conjunto de acontecimientos que intervienen en la vida de las ciudades. Entendemos este fenómeno como una red poliédrica y multidimensional, cuyo estudio pasa por el análisis de diversas problemáticas: la identificación de los límites entre espacio público y esfera pública; la conformación del espacio público construido; la aproximación teórica al fenómeno desde la contemporaneidad; la dimensión social del espacio público; y finalmente la perspectiva de la gestión de las ciudades. Todas estas dimensiones expresan una mirada crítica del objeto i ponen en valor niveles de trabajo interdisciplinar y multiescala, fundamentales para entender e intervenir en el espacio público de la ciudad contemporánea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: This study aimed at measuring the lipophilicity and ionization constants of diastereoisomeric dipeptides, interpreting them in terms of conformational behavior, and developing statistical models to predict them. METHODS: A series of 20 dipeptides of general structure NH(2) -L-X-(L or D)-His-OMe was designed and synthetized. Their experimental ionization constants (pK(1) , pK(2) and pK(3) ) and lipophilicity parameters (log P(N) and log D(7.4) ) were measured by potentiometry. Molecular modeling in three media (vacuum, water, and chloroform) was used to explore and sample their conformational space, and for each stored conformer to calculate their radius of gyration, virtual log P (preferably written as log P(MLP) , meaning obtained by the molecular lipophilicity potential (MLP) method) and polar surface area (PSA). Means and ranges were calculated for these properties, as was their sensitivity (i.e., the ratio between property range and number of rotatable bonds). RESULTS: Marked differences between diastereoisomers were seen in their experimental ionization constants and lipophilicity parameters. These differences are explained by molecular flexibility, configuration-dependent differences in intramolecular interactions, and accessibility of functional groups. Multiple linear equations correlated experimental lipophilicity parameters and ionization constants with PSA range and other calculated parameters. CONCLUSION: This study documents the differences in lipophilicity and ionization constants between diastereoisomeric dipeptides. Such configuration-dependent differences are shown to depend markedly on differences in conformational behavior and to be amenable to multiple linear regression. Chirality 24:566-576, 2012. © 2012 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses some of the key concepts in the consideration of public art as a central element in urban regeneration processes, especially in reference to its role in the processes of citizen participation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este artículo planteamos una aproximación a la idea de espacio público como articulador del conjunto de acontecimientos que intervienen en la vida de las ciudades. Entendemos este fenómeno como una red poliédrica y multidimensional, cuyo estudio pasa por el análisis de diversas problemáticas: la identificación de los límites entre espacio público y esfera pública; la conformación del espacio público construido; la aproximación teórica al fenómeno desde la contemporaneidad; la dimensión social del espacio público; y finalmente la perspectiva de la gestión de las ciudades. Todas estas dimensiones expresan una mirada crítica del objeto i ponen en valor niveles de trabajo interdisciplinar y multiescala, fundamentales para entender e intervenir en el espacio público de la ciudad contemporánea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sustainable resource use is one of the most important environmental issues of our times. It is closely related to discussions on the 'peaking' of various natural resources serving as energy sources, agricultural nutrients, or metals indispensable in high-technology applications. Although the peaking theory remains controversial, it is commonly recognized that a more sustainable use of resources would alleviate negative environmental impacts related to resource use. In this thesis, sustainable resource use is analysed from a practical standpoint, through several different case studies. Four of these case studies relate to resource metabolism in the Canton of Geneva in Switzerland: the aim was to model the evolution of chosen resource stocks and flows in the coming decades. The studied resources were copper (a bulk metal), phosphorus (a vital agricultural nutrient), and wood (a renewable resource). In addition, the case of lithium (a critical metal) was analysed briefly in a qualitative manner and in an electric mobility perspective. In addition to the Geneva case studies, this thesis includes a case study on the sustainability of space life support systems. Space life support systems are systems whose aim is to provide the crew of a spacecraft with the necessary metabolic consumables over the course of a mission. Sustainability was again analysed from a resource use perspective. In this case study, the functioning of two different types of life support systems, ARES and BIORAT, were evaluated and compared; these systems represent, respectively, physico-chemical and biological life support systems. Space life support systems could in fact be used as a kind of 'laboratory of sustainability' given that they represent closed and relatively simple systems compared to complex and open terrestrial systems such as the Canton of Geneva. The chosen analysis method used in the Geneva case studies was dynamic material flow analysis: dynamic material flow models were constructed for the resources copper, phosphorus, and wood. Besides a baseline scenario, various alternative scenarios (notably involving increased recycling) were also examined. In the case of space life support systems, the methodology of material flow analysis was also employed, but as the data available on the dynamic behaviour of the systems was insufficient, only static simulations could be performed. The results of the case studies in the Canton of Geneva show the following: were resource use to follow population growth, resource consumption would be multiplied by nearly 1.2 by 2030 and by 1.5 by 2080. A complete transition to electric mobility would be expected to only slightly (+5%) increase the copper consumption per capita while the lithium demand in cars would increase 350 fold. For example, phosphorus imports could be decreased by recycling sewage sludge or human urine; however, the health and environmental impacts of these options have yet to be studied. Increasing the wood production in the Canton would not significantly decrease the dependence on wood imports as the Canton's production represents only 5% of total consumption. In the comparison of space life support systems ARES and BIORAT, BIORAT outperforms ARES in resource use but not in energy use. However, as the systems are dimensioned very differently, it remains questionable whether they can be compared outright. In conclusion, the use of dynamic material flow analysis can provide useful information for policy makers and strategic decision-making; however, uncertainty in reference data greatly influences the precision of the results. Space life support systems constitute an extreme case of resource-using systems; nevertheless, it is not clear how their example could be of immediate use to terrestrial systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term Space Manifold Dynamics (SMD) has been proposed for encompassing the various applications of Dynamical Systems methods to spacecraft mission analysis and design, ranging from the exploitation of libration orbits around the collinear Lagrangian points to the design of optimal station-keeping and eclipse avoidance manoeuvres or the determination of low energy lunar and interplanetary transfers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term Space Manifold Dynamics (SMD) has been proposed for encompassing the various applications of Dynamical Systems methods to spacecraft mission analysis and design, ranging from the exploitation of libration orbits around the collinear Lagrangian points to the design of optimal station-keeping and eclipse avoidance manoeuvres or the determination of low energy lunar and interplanetary transfers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study reports a set of forty proteinogenic histidine-containing dipeptides as potential carbonyl quenchers. The peptides were chosen to cover as exhaustively as possible the accessible chemical space, and their quenching activities toward 4-hydroxy-2-nonenal (HNE) and pyridoxal were evaluated by HPLC analyses. The peptides were capped at the C-terminus as methyl esters or amides to favor their resistance to proteolysis and diastereoisomeric pairs were considered to reveal the influence of configuration on quenching. On average, the examined dipeptides are less active than the parent compound carnosine (βAla + His) thus emphasizing the unfavorable effect of the shortening of the βAla residue as confirmed by the control dipeptide Gly-His. Nevertheless, some peptides show promising activities toward HNE combined with a remarkable selectivity. The results emphasize the beneficial role of aromatic and positively charged residues, while negatively charged and H-bonding side chains show a detrimental effect on quenching. As a trend, ester derivatives are slightly more active than amides while heterochiral peptides are more active than their homochiral diastereoisomer. Overall, the results reveal that quenching activity strongly depends on conformational effects and vicinal residues (as evidenced by the reported QSAR analysis), offering insightful clues for the design of improved carbonyl quenchers and to rationalize the specific reactivity of histidine residues within proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A particular property of the matched desiredimpulse response receiver is introduced in this paper, namely,the fact that full exploitation of the diversity is obtained withmultiple beamformers when the channel is spatially and timelydispersive. This particularity makes the receiver specially suitablefor mobile and underwater communications. The new structureprovides better performance than conventional and weightedVRAKE receivers, and a diversity gain with no needs of additionalradio frequency equipment. The baseband hardware neededfor this new receiver may be obtained through reconfigurabilityof the RAKE architectures available at the base station. Theproposed receiver is tested through simulations assuming UTRAfrequency-division-duplexing mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The identification of the presence of active signaling between astrocytes and neurons in a process termed gliotransmission has caused a paradigm shift in our thinking about brain function. However, we are still in the early days of the conceptualization of how astrocytes influence synapses, neurons, networks, and ultimately behavior. In this Perspective, our goal is to identify emerging principles governing gliotransmission and consider the specific properties of this process that endow the astrocyte with unique functions in brain signal integration. We develop and present hypotheses aimed at reconciling confounding reports and define open questions to provide a conceptual framework for future studies. We propose that astrocytes mainly signal through high-affinity slowly desensitizing receptors to modulate neurons and perform integration in spatiotemporal domains complementary to those of neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of electric motors and industrial appliances such as pumps, fans, and compressors is rapidly increasing. For instance, the integration of an electric motor and a centrifugal pump provides cost savings and improved performance characteristics. Material cost savings are achieved when an electric motor is integrated into the shaft of a centrifugal pump, and the motor utilizes the bearings of the pump. This arrangement leads to a smaller configuration that occupies less floor space. The performance characteristics of a pump drive can be improved by using the variable-speed technology. This enables the full speed control of the drive and the absence of a mechanical gearbox and couplers. When using rotational speeds higher than those that can be directly achieved by the network frequency the structure of the rotor has to be mechanically durable. In this thesis the performance characteristics of an axial-flux solid-rotor-core induction motor are determined. The motor studied is a one-rotor-one-stator axial-flux induction motor, and thus, there is only one air-gap between the rotor and the stator. The motor was designed for higher rotational speeds, and therefore a good mechanical strength of the solid-rotor-core rotor is required to withstand the mechanical stresses. The construction of the rotor and the high rotational speeds together produce a feature, which is not typical of traditional induction motors: the dominating loss component of the motor is the rotor eddy current loss. In the case of a typical industrial induction motor instead the dominating loss component is the stator copper loss. In this thesis, several methods to decrease the rotor eddy current losses in the case of axial-flux induction motors are presented. A prototype motor with 45 kW output power at 6000 min-1 was designed and constructed for ascertaining the results obtained from the numerical FEM calculations. In general, this thesis concentrates on the methods for improving the electromagnetic properties of an axial-flux solid-rotor-core induction motor and examines the methods for decreasing the harmonic eddy currents of the rotor. The target is to improve the efficiency of the motor and to reach the efficiency standard of the present-day industrial induction motors equipped with laminated rotors.