983 resultados para FU(p)-Space
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The integrated and differential cross sections for the production of pairs of isolated photons is measured in proton-proton collisions at a centre-of-mass energy of 7TeV with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 36 pb(-1) is analysed. A next-to-leading-order perturbative QCD calculation is compared to the measurements. A discrepancy is observed for regions of the phase space where the two photons have an azimuthal angle difference Delta phi less than or similar to 2.8 rad.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using data from a single simulation we obtain Monte Carlo renormalization-group information in a finite region of parameter space by adapting the Ferrenberg-Swendsen histogram method. Several quantities are calculated in the two-dimensional N 2 Ashkin-Teller and Ising models to show the feasibility of the method. We show renormalization-group Hamiltonian flows and critical-point location by matching of correlations by doing just two simulations at a single temperature in lattices of different sizes to partially eliminate finite-size effects.
Resumo:
The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.