933 resultados para FRET, siRNA, integrity, live cell imaging
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The idiopathic dilated cardiomyopathy (IDC) is one of the major public health problems in the western world. Patients with IDC in functional class IV (New York Health Association - NYHA), even after therapeutic optimization, have high mortality. Stem cell therapy has emerged as a potential therapeutic option for cell death-related heart diseases and several positive effects were assigned to cell therapy in cardiomyopathy. The aim of this study was identify short-term result of cell transplantation in idiopathic dilated cardiomyopathy patients (IDC) who were treated by transplantation of autologous bone marrow mononuclear cells (BMMC). Intracoronary injections of autologous BMMC were performed in eight patients with severe ventricle dysfunction (mean of left ventricle ejection fraction – LEVF=20.03%), cardiac mass muscle around 156.2 g and NYHA between III and IV grades, other 8 IDC patients received placebo. The IDCs were followed - up for one and two years, by magnetic resonance imaging (MRI). The results after one year showed significant improvement in LVEF (mean=181.4) and muscle mass increasing (mean=181.4 g), after two years the LVEF continued improving, reaching a mean of 32.69% and the cardiac muscle mass kept stable (mean=179.4 g). Excepted for one patient, all the other had improvement in the NYHA functional class. The placebo group did not show any improvement. We believe that BMMC implant may be a beneficial therapeutic option for IDC patients.
Resumo:
Covalent “click” cycloaddition was used to functionalize silica substrates with pH-sensitive nanoparticles, thus producing uniform and highly luminescent analytical devices usable in both commercial fluorimeters and fluorescence microscopes. Quantitative and spatially-resolved extracellular pH measurements were successfully achieved on live cardiac fibroblasts with these novel ion-sensitive surfaces.
Resumo:
The majority of published papers deal mainly with prevalence, pathogenesis and treatment of squamous cell carcinoma of the gingiva (SCCG). On the other hand, little is discussed about the comparison between periodontal disease and gingival carcinoma with emphasis on radiographic imaging. In this case report we discuss the importance of the radiographic aspects in inflammatory periodontal disease and SCCG. This case report shows the importance of differentiating a localized severe periodontal disease and SCCG considering the radiographic aspects of the inflammatory bone loss and tumoral bone loss. The oral health care providers need to be familiar with the radiographic imaging of periodontal disease and SCCG.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background: To establish the best methodology for diagnosis and management of patients with solid and complex renal masses by comparing the costs and benefits of different imaging methods and to improve differential diagnosis of these benign and malignant lesions, particularly by investigating tumour calcifications. Methods: We performed a prospective study on 31 patients with solid or complex masses by submitting them to Abdominal Ultrasonography (US), Doppler Ultrasonography of the renal mass (US Dop), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI). Results: We found 28 patients with malignant and three with benign masses. Of the 28 malignant, 17 showed calcifications at CT; 16 central and one was of the pure peripheral curvilinear type (egg shell). Excretory Urography (IVP) had a significantly lower detection rate for central calcifications than both US and CT. Benign and malignant masses appeared as described in literature, with US, CT and MRI showing high sensitivity and specificity in renal tumor diagnosis. The exception was US Dop where we obtained lower sensitivity for the characterization of malignant tumor flow. Conclusions: In this series we were surprised to find that CT revealed central calcifications in 51.6% of patients, all with malignant lesions, while, literature reports a frequency of calcification in renal cell carcinoma between 8 and 22%, in studies using abdominal films and EU (IVP). This finding is of great importance when we consider that these calcifications occur particularly in malignant neoplasms. As a result of comparing these different imaging methods we have developed a better methodology for renal tumor investigation.
Resumo:
Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi-quantitative intracellular peptidome analyses of siRNA-transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1-10 mu M). The protein kinase A inhibitor KT5720 (1 mu M) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Background: RNA interference (RNAi) is a post-transcriptional gene silencing process in which double-stranded RNA (dsRNA) directs the degradation of a specific corresponding target mRNA. The mediators of this process are small dsRNAs of approximately 21 to 23 bp in length, called small interfering RNAs (siRNAs), which can be prepared in vitro and used to direct the degradation of specific mRNAs inside cells. Hence, siRNAs represent a powerful tool to study and control gene and cell function. Rapid progress has been made in the use of siRNA as a means to attenuate the expression of any protein for which the cDNA sequence is known. Individual siRNAs can be chemically synthesized, in vitro-transcribed, or expressed in cells from siRNA expression vectors. However, screening for the most efficient siRNAs for post-transcriptional gene silencing in cells in culture is a laborious and expensive process. In this study, the effectiveness of two siRNA production strategies for the attenuation of abundant proteins for DNA repair were compared in human cells: (a) the in vitro production of siRNA mixtures by the Dicer enzyme (Diced siRNAs); and (b) the chemical synthesis of very specific and unique siRNA sequences (Stealth RNai (TM)). Materials, Methods & Results: For in vitro-produced siRNAs, two segments of the human Ku70 (167 bp in exon 5; and 249 bp in exon 13; NM001469) and Xrcc4 (172 bp in exon 2; and 108 bp in exon 6; NM003401) genes were chosen to generate dsRNA for subsequent "Dicing" to create mixtures of siRNAs. The Diced fragments of siRNA for each gene sequence were pooled and stored at -80 degrees C. Alternatively, chemically synthesized Stealth siRNAs were designed and generated to match two very specific gene sequence regions for each target gene of interest (Ku70 and Xrcc4). HCT116 cells were plated at 30% confluence in 24- or 6-well culture plates. The next day, cells were transfected by lipofection with either Diced or Stealth siRNAs for Ku70 or Xrcc4, in duplicate, at various doses, with blank and sham transfections used as controls. Cells were harvested at 0, 24, 48, 72 and 96 h post-transfection for protein determination. The knockdown of specific targeted gene products was quantified by Western blot using GAPDH as control. Transfection of gene-specific siRNA to either Ku70 or Xrcc4 with both Diced and Stealth siRNAs resulted in a down regulation of the targeted proteins to approximately 10 to 20% of control levels 48 h after transfection, with recovery to pre-treatment levels by 96 h. Discussion: By transfecting cells with Diced or chemically synthesized Stealth siRNAs, Ku70 and Xrcc4, two highly expressed proteins in cells, were effectively attenuated, demonstrating the great potential for the use of both siRNA production strategies as tools to perform loss of function experiments in mammalian cells. In fact, down-regulation of Ku70 and Xrcc4 has been shown to reduce the activity of the non-homologous end joining DNA pathway, a very desirable approach for the use of homologous recombination technology for gene targeting or knockout studies. Stealth RNAi (TM) was developed to achieve high specificity and greater stability when compared with mixtures of enzymatically-produced (Diced) siRNA fragments. In this study, both siRNA approaches inhibited the expression of Ku70 and Xrcc4 gene products, with no detectable toxic effects to the cells in culture. However, similar knockdown effects using Diced siRNAs were only attained at concentrations 10-fold higher than with Stealth siRNAs. The application of RNAi technology will expand and continue to provide new insights into gene regulation and as potential applications for new therapies, transgenic animal production and basic research.
Resumo:
Neoplasms in children after organ transplantation are related to the type and intensity of immunosuppression and the donorrecipient serostatus, especially in relation to the EpsteinBarr virus. The patient was a two-yr-old female child with biliary atresia who underwent a liver transplantation from a female cadaver donor. Two adults received kidney transplants from the same donor. Nine months after transplantation, one of the adult recipients developed an urothelial tumor in the kidney graft. Imaging tests were repeated monthly in the liver-transplanted child and revealed no abnormalities. However, one yr and two months after the transplantation, the patient developed episodes of fever. At that time, imaging and liver biopsy showed a clear cell tumor of urothelial origin in the graft and the disease was limited to the liver. The patient underwent liver retransplantation, and she is currently free of tumor recurrence. Although rare, the occurrence of tumors in the post-transplant period from cadaver donors, without previously diagnosed tumors, is one of the many problems encountered in the complex world of organ transplantation.
Resumo:
Human adult stem cells (hASCs) offer a potentially renewable source of cell types that are easily isolated and rapidly expanded for use in regenerative medicine and cell therapies without the complicating ethical problems that are associated with embryonic stem cells. However, the eventual therapeutic use of hASCs requires that these cells and their derivatives maintain their genomic stability. There is currently a lack of systematic studies that are aimed at characterising aberrant chromosomal changes in cultured ASCs over time. However, the presence of mosaicism and accumulation of karyotypic abnormalities within cultured cell subpopulations have been reported. To investigate cytogenetic integrity of cultured human dental stem cell (hDSC) lines, we analysed four expanded hDSC cultures using classical G banding and fluorescent in situ hybridisation (FISH) with X chromosome specific probe. Our preliminary results revealed that about 70% of the cells exhibited karyotypic abnormalities including polyploidy, aneuploidy and ring chromosomes. The heterogeneous spectrum of abnormalities indicates a high frequency of chromosomal mutations that continuously arise upon extended culture. These findings emphasise the need for the careful analysis of the cytogenetic stability of cultured hDSCs before they can be used in clinical therapies.
Resumo:
Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pretreatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.
Resumo:
Purpose: Dynamic near infrared fluorescence imaging of the urinary tract provides a promising way to diagnose ureteropelvic junction obstruction. Initial studies demonstrated the ability to visualize urine flow and peristalsis in great detail. We analyzed the efficacy of near infrared imaging in evaluating ureteropelvic junction obstruction, renal involvement and the anatomical detail provided compared to conventional imaging modalities. Materials and Methods: Ten swine underwent partial or complete unilateral ureteral obstruction. Groups were survived for the short or the long term. Imaging was performed with mercaptoacetyltriglycine diuretic renogram, magnetic resonance urogram, excretory urogram, ultrasound and near infrared imaging. Scoring systems for ureteropelvic junction obstruction were developed for magnetic resonance urogram and near infrared imaging. Physicians and medical students graded ureteropelvic junction obstruction based on magnetic resonance urogram and near infrared imaging results. Results: Markers of vascular and urinary dynamics were quantitatively consistent among control renal units. The same markers were abnormal in obstructed renal units with significantly different times of renal phase peak, start of pelvic phase and start of renal uptake. Such parameters were consistent with those obtained with mercaptoacetyltriglycine diuretic renography. Near infrared imaging provided live imaging of urinary flow, which was helpful in identifying the area of obstruction for surgical planning. Physicians and medical students categorized the degree of obstruction appropriately for fluorescence imaging and magnetic resonance urogram. Conclusions: Near infrared imaging offers a feasible way to obtain live, dynamic images of urine flow and ureteral peristalsis. Qualitative and quantitative parameters were comparable to those of conventional imaging. Findings support fluorescence imaging as an accurate, easy to use method of diagnosing ureteropelvic junction obstruction.
Resumo:
Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.