848 resultados para Extruded plastic scintillator
Resumo:
The excellence of its flesh and fast growth makes the dourado, Salminus brasiliensis, a carnivorous fish native to the Prata basin, a potential candidate for intensive fish farming. This study evaluated the apparent digestibility coefficients (ADC) of energy and nutrients of animal and plant protein sources for the carnivorous Characin dourado S. brasiliensis. Fish (19.5 +/- 5.0 g) were stocked in plastic cages (80-L) and fed pelleted test diets containing 30% of the test ingredient [fish meal (FM), poultry by-product meal (PBM), soybean meal (SBM), and corn gluten meal (CGM) plus 70% of a reference diet (481.4 g kg(-1) of crude protein and 18.63 kJ of gross energy per gram]. After the last daily meal, cages were transferred to cylindrical, conical-bottomed aquarium (200-L) where faeces were collected by sedimentation in a refrigerated container. Except for ADC of protein and energy, all other ADC of nutrients showed significant differences (P < 0.01). ADC values were: 94.3%, 91.3%, 93.1%, and 93.5% for crude protein; 91.0%, 90.3%, 87.8%, and 88.8% for gross energy; 92.1%, 84.5%, 80.6%, and 79.3% for ash; 83.9%, 80.3%, 84.3%, and 84.6% for dry matter; 97.4%, 96.7%, 93.3%, and 91.5% for lipid for FM, PBM, SBM, and CGM, respectively. The average amino acid ADC was: 93.6%, 90.0%, 92.1%, and 92.5% of FM, PBM, SBM, and CGM, respectively. All test ingredients were efficiently used and can partially replace FM in diets for carnivorous dourado.
Resumo:
Impaired immune system by environmental stressors can lead fishes to be more susceptible to diseases that limit the economic development of aquaculture systems. This study was set out to determine the effect of six levels of mannan oligosaccharides (MOS; ActiveMOS((R)); Biorigin, Lencois Paulista, Sao Paulo, Brazil) on the performance index and hematology of Nile tilapia, Oreochromis niloticus juveniles. Fish (13.62 g) were randomly distributed into 18 plastic aquaria (300 L; 20 fishes per aquarium) and fed during 45 d with a commercial diet supplemented with 0, 0.2, 0.4, 0.6, 0.8, and 1% dietary MOS, in a totally randomized design trial (n = 3); biometrical and hematological data were collected and analyzed. There were no significant differences in hematological parameters between fish fed control and MOS supplementation diets, and daily feed consumption (FC) decreased (P < 0.05) with increasing levels of dietary MOS. Dietary MOS did not increase leukocyte count and presented negative effects on FC of Nile tilapia. At 0.4% MOS supplementation, the individual weight gain was higher in absolute values but not different (P > 0.05) compared to control diet.
Resumo:
This work aimed to evaluate the effect of different concentrations of IBA (indolbutyric acid) in the rooting and growth of Eucalyptus urophylla cuttings. The experimental design used was the randomized blocks, in factorial with an arrangement of split plots, with three concentrations of IBA (2.000; 5.000 and 8.000 mg L(-1)), two ways of the application of plant gowth regulators (paste and powder), and three period of evaluations (30, 45 and 60 days). The experiment was carried out in the Farm Buriti de Prata, an entreprise property of Souza Cruz, in the city of Prata - MG in 2003. After the preparation of the cuttings, patterned in 10 cm of length and 0.8 cm of diameter, those were immersed in mixtures of IBA for 10 seconds, in the forms of dry powder and paste and than planted in plastic tubes contening Plantmax substrate with vermiculite. The cuttings were transported to greenhouse with controled humidity, where they remained for 60 days. The variables studied were: height of plant in the 30(th), 45(th) and 60(th) days after seeding; fresh mass of the aerial part and roots. The IBA applied in powder form as well as in paste form, resulted in an greater seedling growth. To the 60 days, the seedlings presented greater growth, being significantly superior to the heights measured in other times of evaluation. The application of 2.000 mg L(-1) and 5,000 mg L(-1) resulted in significant increases on weight of fresh mass of the aerial part and root system.
Resumo:
Pectin can be used as a natural emulsifier in food formulations. In this study, textured soybean protein (TSP), used as an emulsifier in commercial sausages, was partially replaced by a mixture containing pectin and isolated soybean proteins, which were either extruded (EXT) or not extruded (MIX), and the chemical and sensory characteristics of samples were evaluated after 60 days of storage at 4 degrees C. Responses such as oxidation measured by PV and TBARS, hardness, color, pH and sensory characteristics were compared with those of a commercial sausage (CON). The mixture containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins, as emulsifier agent, reduced the hardness (EXT: 21.69 +/- 0.98 and MIX: 20.17 +/- 2.76 N) and the pH (EXT: 5.46 +/- 0.03 and MIX: 5.29 +/- 0.01) of the samples and increased the concentration of peroxides (EXT: 0.10 +/- 0.01 and MIX: 0.15 +/- 0.01 meq/kg) when compared with samples formulated only with TSP (28.57 +/- 2.54 N, pH of 6.92 +/- 0.04 and PV = 0.07 +/- 0.01 meq/kg). These effects were likely caused by the anionic character of the emulsifier. However, no sensory difference was observed between the sausages containing highly methyl-esterified pectin, textured soybean proteins and isolated soybean proteins submitted to the extrusion process (EXT) and the control sausages, suggesting that the formulation proposed in this study can be a potential alternative for the further development of sausages that have functional properties or are free of artificial additives.
Resumo:
In order to protect food from pathogenic microorganisms as well as increase its shelf-life, while keeping sensorial properties (e.g., odor and taste), which are important properties required by spice buyers, it is necessary to analyze volatile formation from irradiation of medicinal and food herbs. Possible changes in the odor of these herbs are evaluated by characterizing different radiation doses and effects on sensorial properties, in order to allow better application of the irradiation technology. The aim of the present study was to analyze volatile formation on cinnamon (Laurus cinnamomum) samples after gamma irradiation. These samples were irradiated into plastic packages using a (60)Co facility. Radiation doses applied were 0, 5, 10, 15, 20 and 25 kGy. For the analysis of the samples, solid-phase microextraction (SPME) was applied, while for the analysis of volatile compounds, CG/MS. Spice irradiation showed the highest decrease in volatile compounds. For L. cinnamomum, the irradiation decreased volatile compounds by nearly 56% and 89.5%, respectively, comparing to volatile from a sample which had not been previously irradiated. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
Interesterification of palm stearin (PS) with liquid vegetable oils could yield a good solid fat stock that may impart desirable physical properties, because PS is a useful source of vegetable hard fat, providing beta` stable solid fats Dietary ingestion of olive oil (OO) has been reported to have physiological benefits such as lowering serum cholesterol levels Fat blends, formulated by binary blends of palm stearin and olive oil in different ratios, were subjected to chemical interesterification with sodium methoxide The original and interesterified blends were examined for fatty acid and triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interestenfication caused rearrangement of triacylglycerol species, reduction of trisaturated and triunsaturated triacylglycerols content and increase in diunsaturated-monosaturated triacylglycerols of all blends, resulting in lowering of melting point and solid fat content The incorporation of OO to PS reduced consistency, producing more plastic blends The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and olive oil (C) 2009 Elsevier Ltd All rights reserved
Resumo:
Blends of canola oil (CO) and fully hydrogenated cottonseed oil (FHCSO), with 20, 25, 30, 35 and 40% FHCSO (w/w) were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in disaturated-monounsaturated and monosaturated-diunsaturated triacylglycerols in all blends, resulting in lowering of respective melting points. The interesterified blends showed reduced SFC at all temperatures and more linear melting profiles if compared with the original blends. Consistency, expressed as yield value, significantly decreased after the reaction. Iso-solid curves indicated eutectic interactions for the original blends, which were eliminated after randomization. The 80:20, 75:25, 70:30 and 65:35 (w/w) CO: FHCSO interesterified blends showed characteristics which are appropriate for their application as soft margarines, spreads, fat for bakery/all-purpose shortenings, and icing shortenings, respectively. PRACTICAL APPLICATIONS Recently, a number of studies have suggested a direct relationship between trans isomers and increased risk of vascular disease. In response, many health organizations have recommended reducing consumption of foods containing trans fatty acids. In this connection, chemical interesterification has proven the main alternative for obtaining plastic fats that have low trans isomer content or are even trans isomer free. This work proposes to evaluate the chemical interesterification of binary blends of canola oil and fully hydrogenated cottonseed oil and the specific potential application of these interesterified blends in food products.
Resumo:
Blends of soybean oil (50) and fully hydrogenated soybean oil (FHSBO), with 10%, 20%, 30%, 40% and 50% FHSBO (w/w) content were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100 degrees C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in monounsaturated and diunsaturated triacylglycerols, resulting in lowering of respective melting points. The interesterified blends displayed reduced SFC at all temperatures and more linear melting profiles as compared with the original blends. Yield values showed increased plasticity in the blends after the reaction. Isosolid diagrams before and after the reaction showed no eutectic interactions. The 90:10, 80:20, 70:30 and 60:40 interesterified SO:FHSBO blends displayed characteristics suited to application, respectively, as liquid shortening, table margarine, baking/confectionery fat and all-purpose shortenings/biscuit-filing base. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The use of biodegradable natural polymers has increased due to the over-solid packaging waste. In this study, a chemical modification of the casein molecule was performed by Maillard reaction, and the modified polymer was evaluated by polyacrylamide gel electrophoresis (PAGE), thermogravimetry/derivative thermogravimetry (TG/DTG), FT-IR, and (1)H-NMR spectroscopy. Subsequently, films based on the modified casein were obtained and characterized by mechanical analysis, water vapor transmission, and erosion behavior. The PAGE results suggested an increase of molecular mass of the modified polymer, and FT-IR spectroscopy data indicated inclusion of C-OH groups into this molecule. The TG/DTG curves of modified casein presented a different thermal decomposition profile compared to the individual compounds. Mechanical tests showed that the chemical modification of the casein molecules provided higher elongation rates (45.5%) to the films, suggesting higher plasticity, than the original molecules (13.4%). The modified casein films presented higher permeability (0.505 +/- A 0.006 mu g/h mm(3)) than the original polymer (0.387 +/- A 0.006 mu g/h mm(3)) films at 90% relative humidity (RH). In pH 1.2, modified casein films presented higher erosion rates (32.690 +/- A 0.692%) than casein films (19.910 +/- A 2.083%) after 8 h, suggesting an increased sensibility for erosion of the modified casein films in acid environment. In water (pH 7.0), the films erosion profiles were similar. Those findings indicate that the modification of molecule by Maillard reaction provided films more plastic, hydrophilic, and sensitive to erosion in acid environment, suggesting that a new polymer with changed properties was founded.
Resumo:
Matrix metalloproteinases (MMPs) are promising diagnostic tools, and blood sampling/handling alters MMP concentrations between plasma and serum and between serum with and without clot activators. To explain the higher MMP-9 expression in serum collected with clot accelerators relative to serum with no additives and to plasma, we analyzed the effects of increasing amounts of silica and silicates (components of clot activators) in,citrate plasma, serum, and huffy coats collected in both plastic and glass tubes from 50 healthy donors, and we analyzed the effects of silica and silicate on cultured leukemia cells. The levels of MMP-2 did not show significant changes between glass and plastic tubes, between serum and plasma, between serum with and without clot accelerators, or between silica and silicate treatments. No modification of MMP-9 expression was obtained by the addition of silica or silicate to previously separated plasma and serum. Increasing the amounts of nonsoluble silica and soluble silicate added to citrate and empty tubes prior to blood collection resulted in increasing levels of MMP-9 relative to citrate plasma and serum. Silica and silicate added to buffy coats and leukemia cells significantly induced MMP-9 release/secretion, demonstrating that both silica and silicate induce the release of pro- and complexed MMP-9 forms. We recommend limiting the misuse of serum and avoiding the interfering effects of clot activators. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Modeling volcanic phenomena is complicated by free-surfaces often supporting large rheological gradients. Analytical solutions and analogue models provide explanations for fundamental characteristics of lava flows. But more sophisticated models are needed, incorporating improved physics and rheology to capture realistic events. To advance our understanding of the flow dynamics of highly viscous lava in Peléean lava dome formation, axi-symmetrical Finite Element Method (FEM) models of generic endogenous dome growth have been developed. We use a novel technique, the level-set method, which tracks a moving interface, leaving the mesh unaltered. The model equations are formulated in an Eulerian framework. In this paper we test the quality of this technique in our numerical scheme by considering existing analytical and experimental models of lava dome growth which assume a constant Newtonian viscosity. We then compare our model against analytical solutions for real lava domes extruded on Soufrière, St. Vincent, W.I. in 1979 and Mount St. Helens, USA in October 1980 using an effective viscosity. The level-set method is found to be computationally light and robust enough to model the free-surface of a growing lava dome. Also, by modeling the extruded lava with a constant pressure head this naturally results in a drop in extrusion rate with increasing dome height, which can explain lava dome growth observables more appropriately than when using a fixed extrusion rate. From the modeling point of view, the level-set method will ultimately provide an opportunity to capture more of the physics while benefiting from the numerical robustness of regular grids.
Resumo:
Silicic volcanic eruptions are typically accompanied by repetitive Long-Period (LP) seismicity that originates from a small region of the upper conduit. These signals have the capability to advance eruption prediction, since they commonly precede a change in the eruption vigour. Shear bands forming along the conduit wall, where the shear stresses are highest, have been linked to providing the seismic trigger. However, existing computational models are unable to generate shear bands at the depths where the LP signals originate using simple magma strength models. Presented here is a model in which the magma strength is determined from a constitutive relationship dependent upon crystallinity and pressure. This results in a depth-dependent magma strength, analogous to planetary lithospheres. Hence, in shallow highly-crystalline regions a macroscopically discontinuous brittle type of deformation will prevail, whilst in deeper crystal-poor regions there will be a macroscopically continuous plastic deformation mechanism. This will result in a depth where the brittle-ductile transition occurs, and here shear bands disconnected from the free-surface may develop. We utilize the Finite Element Method and use axi-symmetric coordinates to model magma flow as a viscoplastic material, simulating quasi-static shear bands along the walls of a volcanic conduit. Model results constrained to the Soufrière Hills Volcano, Montserrat, show the generation of two types of shear bands: upper-conduit shear bands that form between the free-surface to a few 100 metres below it and discrete shear bands that form at the depths where LP seismicity is measured to occur corresponding to the brittle-ductile transition and the plastic shear region. It is beyond the limitation of the model to simulate a seismic event, although the modelled viscosity within the discrete shear bands suggests a failure and healing cycle time that supports the observed LP seismicity repeat times. However, due to the paucity of data and large parameter space available these results can only be considered to be qualitative rather than quantitative at this stage.
Resumo:
Kidney function and the role of the cloacal complex in osmoregulation was investigated in estuarine crocodile (Crocodylus porosus) exposed to three environmental salinities: hypo-, iso- and hyperosmotic to the plasma. Plasma homeostasis was maintained over the range of salinities. Antidiuresis occurred with increased salinity. Although urine from the kidneys retained an osmotic pressure between 77% and 82% of the plasma, over 93% and 98% of plasma chloride filtered at the glomeruli was reabsorbed during passage through the kidneys under hypo and hyperosmotic conditions, respectively, and only 64% in iso-osmotic water. The kidneys were the primary site of sodium reabsorption under hypo-and hyperosmotic conditions. Secondary processing of urine during storage in the cloaca varied with salinity. During post renal storage of urine, the difference in urine osmotic pressure increased from -26.1 +/- 15.5 to 35.66 +/- 9.29 mOsM with increased salinity, and potassium concentration of urine increased over 3-fold in C. porosus from freshwater. The almost complete reabsorption of both sodium and chloride under hyperosmotic conditions indicates the necessity for secretory activity by the lingual salt glands. The osmoregulatory response of the kidneys and cloacal complex to environmental salinity is both plastic and complementary. (C) 1998 Elsevier Science Inc.
Resumo:
OBJECTIVES: To simplify the practice of stereotactic surgery by using an original method, apparatus, and solid anatomic replica for trajectory planning and to validate the method and apparatus in a laboratory and clinical trial. METHODS: The patient is marked with fiducials and scanned by using computed tomography or magnetic resonance imaging. The three-dimensional data are converted to a format acceptable to stereolithography. Stereolithography uses a laser to polymerize photosensitive resin into a solid plastic model (biomodel). Stereolithography can replicate brood vessels, soft tissue, tumor, and bone accurately (
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.