937 resultados para Extracellular digestion
Resumo:
The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.
Resumo:
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Resumo:
BACKGROUND & AIMS: Little is known about how endothelial cells respond to injury, regulate hepatocyte turnover and reconstitute the hepatic vasculature. We aimed to determine the effects of the vascular ectonucleotidase CD39 on sinusoidal endothelial cell responses following partial hepatectomy and to dissect purinergic and growth factor interactions in this model. METHODS: Parameters of liver injury and regeneration, as well as the kinetics of hepatocellular and sinusoidal endothelial cell proliferation, were assessed following partial hepatectomy in mice that do not express CD39, that do not express ATP/UTP receptor P2Y2, and in controls. The effects of extracellular ATP on vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and interleukin-6 responses were determined in vivo and in vitro. Phosphorylation of the endothelial VEGF receptor in response to extracellular nucleotides and growth factors was assessed in vitro. RESULTS: After partial hepatectomy, expression of the vascular ectonucleotidase CD39 increased on sinusoidal endothelial cells. Targeted disruption of CD39 impaired hepatocellular regeneration, reduced angiogenesis, and increased hepatic injury, resulting in pronounced vascular endothelial apoptosis, and decreased survival. Decreased HGF release by sinusoidal endothelial cells, despite high levels of VEGF, reduced paracrine stimulation of hepatocytes. Failure of VEGF receptor-2/KDR transactivation by extracellular nucleotides on CD39-null endothelial cells was associated with P2Y2 receptor desensitization. CONCLUSIONS: Regulated phosphohydrolysis of extracellular nucleotides by CD39 coordinates both hepatocyte and endothelial cell proliferation following partial hepatectomy. Lack of CD39 activity is associated with decreased hepatic regeneration and failure of vascular reconstitution.
Resumo:
Crosstalk between elements of the sinusoidal vasculature, platelets and hepatic parenchymal cells influences regenerative responses to liver injury and/or resection. Such paracrine interactions include hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), IL-6 and small molecules such as serotonin and nucleotides. CD39 (nucleoside triphosphate diphosphohydrolase-1) is the dominant vascular ectonucleotidase expressed on the luminal surface of endothelial cells and modulates extracellular nucleotide signaling. We have previously shown that integrity of P2-receptors, as maintained by CD39, is required for angiogenesis in Matrigel plugs in vivo and that there is synergism between nucleotide P2-receptor- and growth factor-mediated cell proliferation in vitro. We have now explored effects of CD39 on liver regeneration and vascular endothelial growth factor responses in a standard small animal model of partial hepatectomy. The expression of CD39 on liver sinusoidal endothelial cells (LSEC) is substantially boosted during liver regeneration. This transcriptional upregulation precedes maximal sinusoidal endothelial cell proliferation, noted at day 5-8 in C57BL6 wild type mice. In matched mutant mice null for CD39 (n=14), overall survival is decreased to 71% by day 10. Increased lethality occurs as a consequence of extensive LSEC apoptosis, decreased endothelial proliferation and failure of angiogenesis leading to hepatic infarcts and regenerative failure in mutant mice. This aberrant vascular remodeling is associated with biochemical liver injury, elevated serum levels of VEGF (113.9 vs. 65.5pg/ml, p=0.013), and decreased circulating HGF (0.89 vs. 1.43 ng/ml, p=0.001) in mice null for CD39. In agreement with these observations, wild type LSEC but not CD39 null cultures upregulate HGF expression and secretion in response to exogenous VEGF in vitro. CD39 null LSEC cultures show poor proliferation responses and heightened levels of apoptosis when contrasted to wild type LSEC where agonists of P2Y receptors augment cell proliferation in the presence of growth factors. These observations are associated with features of P2Y-desensitization, normal levels of the receptor tyrosine kinase VEGFR-1 (Flt-1) and decreased expression of VEGFR-2 (FLK/KDR) in CD39 null LSEC cultures. We provide evidence that CD39 and extracellular nucleotides impact upon growth factor responses and tyrosine receptor kinases during LSEC proliferation. We propose that CD39 expression by LSEC might co-ordinate angiogenesis-independent liver protection by facilitating VEGF-induced paracrine release of HGF to promote vascular remodeling in liver regeneration.
Resumo:
A comprehensive knowledge of cell wallstructure and function throughout the plant kingdom is essential to understanding cell wall evolution. The fundamental understanding of the charophycean green algal cell wall is broadening. The similarities and differences that exist between land plant and algal cell walls provide opportunities to understand plant evolution. A variety of polymers previously associated with higher plants were discovered in the charophycean green algae (CGA), including homogalacturonans, cross-linking glycans, arabinogalactan protein, β-glucans, and cellulose. The cellulose content of CGA cell walls ranged from 6% to 43%, with the higher valuescomparable to that found in the primary cell wall of land plants (20-30%). (1,3)β-glucans were found in the unicellular Chlorokybus atmophyticus, Penium margaritaceum, and Cosmarium turpini, the unbranched filamentous Klebsormidium flaccidum, and the multicellular Chara corallina. The discovery of homogalacturonan in Penium margaritaceum representsthe first confirmation of land plant-type pectinsin desmids and the second rigorous characterization of a pectin polymer from the charophycean algae. Homogalacturonan was also indicated from the basal species Chlorokybus atmophyticus and Klebsormidium flaccidum. There is evidence of branched pectins in Cosmarium turpini and linkage analysis suggests the presence of type I rhamnogalacturonan (RGI). Cross-linking β-glucans are associated with cellulose microfibrils during land plant cell growth, and were found in the cell wall of CGA. The evidence of mixed-linkage glucan (MLG) in the 11 charophytesis both suprising and significant given that MLG was once thought to be specific to some grasses. The organization and structure of Cosmarium turpini and Chara corallina MLG was found to be similar to that of Equisetumspp., whereas the basal species of the CGA, Chlorokybus atmophyticus and Klebsormidium flaccidum, have unique organization of alternating of 3- and 4-linkages. The significance of this result on the evolution of the MLG synthetic pathway has yet to be determined. The extracellular matrix (ECM) of Chlorokybus atmophyticus, Klebsormidium flaccidum, and Spirogyra spp. exhibits significant biochemical diversity, ranging from distinct “land plant” polymers to polysaccharides unique to these algae. The neutral sugar composition of Chlorokybus atmophyticus hot water extract and Spirogyra extracellular polymeric substance (EPS), combined with antibody labeling results, revealed the distinct possibility of an arabinogalactan protein in these organisms. Polysaccharide analysis of Zygnematales (desmid) EPS, indicated a probable range of different EPS backbones and substitution patterns upon the core portions of the molecules. Desmid EPS is predominately composed of a complex matrix of branched, uronic acid containing polysaccharides with ester sulfate substitutions and, as such, has an almost infinite capacity for various hydrogen bonding, hydrophobic interaction and ionic cross-bridging motifs, which characterize their unique function in biofilms. My observations support the hypothesis that members of the CGA represent the phylogenetic line that gave rise to vascular plants and that the primary cell wall of vascular plants many have evolved directly from structures typical of the cell wall of filamentous green algae found in the charophycean green algae.
Resumo:
Neutrophil extracellular traps (NETs) represent extracellular structures able to bind and kill microorganisms. It is believed that they are generated by neutrophils undergoing cell death, allowing these dying or dead cells to kill microbes. We show that, following priming with granulocyte/macrophage colony-stimulating factor (GM-CSF) and subsequent short-term toll-like receptor 4 (TLR4) or complement factor 5a (C5a) receptor stimulation, viable neutrophils are able to generate NETs. Strikingly, NETs formed by living cells contain mitochondrial, but no nuclear, DNA. Pharmacological or genetic approaches to block reactive oxygen species (ROS) production suggested that NET formation is ROS dependent. Moreover, neutrophil populations stimulated with GM-CSF and C5a showed increased survival compared with resting neutrophils, which did not generate NETs. In conclusion, mitochondrial DNA release by neutrophils and NET formation do not require neutrophil death and do also not limit the lifespan of these cells.
Resumo:
Starch is the major source of food glucose and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in alpha-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal alpha-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of (13)C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced alpha-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal alpha-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis.
Resumo:
Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.
Resumo:
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is abundant in serum and has a well-characterized biochemistry; however, its physiological role is completely unknown. Previous investigations into GPI-PLD have focused on the adult animal or on in vitro systems and a putative role in development has been neither proposed nor investigated. We describe the first evidence of GPI-PLD expression during mouse embryonic ossification. GPI-PLD expression was detected predominantly at sites of skeletal development, increasing during the course of gestation. GPI-PLD was observed during both intramembraneous and endochondral ossification and localized predominantly to the extracellular matrix of chondrocytes and to primary trabeculae of the skeleton. In addition, the mouse chondrocyte cell line ATDC5 expressed GPI-PLD after experimental induction of differentiation. These results implicate GPI-PLD in the process of bone formation during mouse embryogenesis.
Resumo:
Advanced glycation end products (AGEs) may play a role in the pathogenesis of diabetic nephropathy, by modulating extracellular matrix turnover. AGEs are known to activate specific membrane receptors, including the receptor for AGE (RAGE). In the present study, we analyzed the various receptors for AGEs expressed by human mesangial cells and we studied the effects of glycated albumin and of carboxymethyl lysine on matrix protein and remodelling enzyme synthesis. Membrane RAGE expression was confirmed by FACS analysis. Microarray methods, RT-PCR, and Northern blot analysis were used to detect and confirm specific gene induction. Zymographic analysis and ELISA were used to measure the induction of tPA and PAI-1. We show herein that cultured human mesangial cells express AGE receptor type 1, type 2 and type 3 and RAGE. AGEs (200 microg/ml) induced at least a 2-fold increase in mRNA for 10 genes involved in ECM remodelling, including tPA, PAI-1 and TIMP-3. The increase in tPA synthesis was confirmed by fibrin zymography. The stimulation of PAI-1 synthesis was confirmed by ELISA. AGEs increased PAI-1 mRNA through a signalling pathway involving reactive oxygen species, the MAP kinases ERK-1/ERK-2 and the nuclear transcription factor NF-kappaB, but not AP-1. Carboxymethyl lysine (CML, 5 microM), which is a RAGE ligand, also stimulated PAI-1 synthesis by mesangial cells. In addition, a blocking anti-RAGE antibody partially inhibited the AGE-stimulated gene expression and decreased the PAI-1 accumulation induced by AGEs and by CML. Inhibition of AGE receptors or neutralization of the protease inhibitors TIMP-3 and PAI-1 could represent an important new therapeutic strategy for diabetic nephropathy.
Resumo:
A pentasaccharide as its methyl glycoside has been synthesized efficiently using a modified glycosylation strategy. This pentasaccharide is a repeating unit of the exopolysaccharides produced by Lactobacillus delbrueckii subsp. bulgaricus 291
Resumo:
In this study, we present the development and the characterization of a generic platform for cell culture able to monitor extracellular ionic activities (K+, NH4+) for real-time monitoring of cell-based responses, such as necrosis, apoptosis, or differentiation. The platform for cell culture is equipped with an array of 16 silicon nitride micropipet-based ion-selective microelectrodes with a diameter of either 2 or 6 microm. This array is located at the bottom of a 200-microm-wide and 350-microm-deep microwell where the cells are cultured. The characterization of the ion-selective microelectrode arrays in different standard and physiological solutions is presented. Near-Nernstian slopes were obtained for potassium- (58.6 +/- 0.8 mV/pK, n = 15) and ammonium-selective microelectrodes (59.4 +/- 3.9 mV/pNH4, n = 13). The calibration curves were highly reproducible and showed an average drift of 4.4 +/- 2.3 mV/h (n = 10). Long-term behavior and response after immersion in physiological solutions are also presented. The lifetime of the sensors was found to be extremely long with a high recovery rate.
Resumo:
Gingipains are cysteine proteases that represent major virulence factors of the periodontopathogenic bacterium Porphyromonas gingivalis. Gingipains are reported to degrade extracellular matrix (ECM) of periodontal tissues, leading to tissue destruction and apoptosis. The exact mechanism is not known, however. Fibronectin and tenascin-C are pericellular ECM glycoproteins present in periodontal tissues. Whereas fibronectin mediates fibroblast adhesion, tenascin-C binds to fibronectin and inhibits its cell-spreading activity. Using purified proteins in vitro, we asked whether fibronectin and tenascin-C are cleaved by gingipains at clinically relevant concentrations, and how fragmentation by the bacterial proteases affects their biological activity in cell adhesion. Fibronectin was cleaved into distinct fragments by all three gingipains; however, only arginine-specific HRgpA and RgpB but not lysine-specific Kgp destroyed its cell-spreading activity. This result was confirmed with recombinant cell-binding domain of fibronectin. Of the two major tenascin-C splice variants, the large but not the small was a substrate for gingipains, indicating that cleavage occurred primarily in the alternatively spliced domain. Surprisingly, cleavage of large tenascin-C variant by all three gingipains generated fragments with increased anti-adhesive activity towards intact fibronectin. Fibronectin and tenascin-C fragments were detected in gingival crevicular fluid of a subset of periodontitis patients. We conclude that cleavage by gingipains directly affects the biological activity of both fibronectin and tenascin-C in a manner that might lead to increased cell detachment and loss during periodontal disease.