883 resultados para Exotic dancing


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies were conducted to evaluate whether the herbicide imazapyr or a combination of imazapyr and fluridone could be used effectively to control torpedograss ( Panicum repens L.), an exotic perennial plant that has replaced more than 6,000 ha of native vegetation and degraded quality wildlife habitat in Lake Okeechobee, Florida. Torpedograss was controlled for more than one year in some areas following a single aerial treatment using 0.56, 0.84, or 1.12 kg acid equivalents (ae) imazapyr/ha. Combining imazapyr and fluridone did not increase the level of torpedograss control. In areas where plant biomass was reduced by fire prior to being treated with 0.84 or 1.12 kg ae imazapyr/ha, torpedograss was controlled for more than two years and native plant species, including duck potato ( Sagittaria lancifolia L.) and pickerelweed ( Pontederia cordata L.) became the dominant vegetation in less than one year. Although torpedograss was controlled in some areas, little or no long-term control was observed at 16 of the 26 treatment locations. To reduce the uncertainty associated with predicting long-term treatment affects, additional studies are needed to determine whether environmental factors such as periphyton mats, plant thatch, hydroperiod and water depth affect treatment efficacy. , he

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Florida’s large number of shallow lakes, warm climate and long growing season have contributed to the development of excessive growths of aquatic macrophytes that have seriously interfered with many water use activities. The introduction of exotic aquatic macrophyte species such as hydrilla ( Hydrilla verticillata ) have added significantly to aquatic plant problems in Florida lakes. The use of grass carp ( Ctenopharyngodon idella ) can be an effective and economical control for aquatic vegetation such as hydrilla. Early stocking rates (24 to 74 grass carp per hectare of lake area) resulted in grass carp consumption rates that vastly exceeded the growth rates of the aquatic plants and often resulted in the total loss of all submersed vegetation. This study looked at 38 Florida lakes that had been stocked with grass carp for 3 to 10 years with stocking rates ranging from < 1 to 59 grass carp per hectare of lake and 1 to 207 grass carp per hectare of vegetation to determine the long term effects of grass carp on aquatic macrophyte communities. The median PAC (percent area coverage) value of aquatic macrophytes for the study lakes after they were stocked with grass carp was 14% and the median PVI (percent volume infested) value of aquatic macrophytes was 2%. Only lakes stocked with less than 25 to 30 fish per hectare of vegetation tended to have higher than median PAC and PVI values. When grass carp are stocked at levels of > 25 to 30 fish per hectare of vegetation the complete control of aquatic vegetation can be achieved, with the exception of a few species of plants that grass carp have extreme difficulty consuming. If the management goal for a lake is to control some of the problem aquatic plants while maintaining a small population of predominately unpalatable aquatic plants, grass carp can be stocked at approximately 25 to 30 fish per hectare of vegetation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wild taro (Colocasia esculenta (L.) Schott), is an exotic, emergent perennial that has established in many shallow-water wetlands throughout the southern United States. Although wild taro is a cultivated crop in many tropical and subtropical areas of the world, its invasion in riverine and lacustrine wetlands in the U.S. has resulted in the loss of habitat for native plant species. Once established, wild taro forms dense, monotypic stands that reduce the diversity of native vegetation, as has occurred in Louisiana, Florida, and Texas (Akridge and Fonteyn 1981, Simberloff et al. 1997). Akridge and Fonteyn (1981) reported that although wild taro is considered naturalized in south-central Texas, its present dominance along the San Marcos River has altered the native vegetational structure and dynamics of this river system. The objective of this study was to evaluate the efficacy of four aquatic herbicides for control of wild taro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study of aquatic plant biomass within Cayuga Lake, New York spans twelve years from 1987-1998. The exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) decreased in the northwest end of the lake from 55% of the total biomass in 1987 to 0.4% in 1998 and within the southwest end from 50% in 1987 to 11% in 1998. Concurrent with the watermilfoil decline was the resurgence of native species of submersed macrophytes. During this time we recorded for the first time in Cayuga Lake two herbivorous insect species: the aquatic moth Acentria ephemerella , first observed in 1991, and the aquatic weevil Euhrychiopsis lecontei , first found in 1996 . Densities of Acentria in southwest Cayuga Lake averaged 1.04 individuals per apical meristem of Eurasian watermilfoil for the three-year period 1996-1998. These same meristems had Euhrychiopsis densities on average of only 0.02 individuals per apical meristem over the same three-year period. A comparison of herbivore densities and lake sizes from five lakes in 1997 shows that Acentria densities correlate positively with lake surface area and mean depth, while Euhrychiopsis densities correlate negatively with lake surface area and mean depth. In these five lakes, Acentria densities correlate negatively with percent composition and dry mass of watermilfoil. However, Euhrychiopsis densities correlate positively with percent composition and dry mass of watermilfoil. Finally, Acentria densities correlate negatively with Euhrychiopsis densities suggesting interspecific competition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Euhrychiopsis lecontei RAYMOND M. NEWMAN 1 AND DAVID D. BIESBOER 2 ABSTRACT The native milfoil weevil, Euhrychiopsis lecontei Dietz, is a candidate biological control agent for the exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) in northern North America. Declines of Eurasian watermilfoil populations have been associated with the weevil but many of these examples are poorly documented. We report the first documented decline of Eurasian watermilfoil in Minnesota due to the milfoil weevil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes Exotic Mollusca in California, by G. Dallas Hanna p.298-321.(PDF contains 57 pages.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIGHLIGHTS FOR FY 2005 1. Assisted with a study to assess hurricane impacts to Gulf sturgeon critical foraging habitat. 2. Documented Gulf sturgeon marine movement and habitat use in the Gulf of Mexico. 3. Documented Gulf sturgeon spawning with the collection of fertilized eggs in the Apalachicola River, Florida. 4. Documented Gulf sturgeon spawning with the collection of fertilized eggs in the Yellow River, Florida. 5. Assisted with benthic invertebrate survey at Gulf sturgeon marine foraging grounds. 6. Implemented Gulf Striped Bass Restoration Plan by coordinating the 22nd Annual Morone Workshop, leading the technical committee, transporting broodfish, and coordinating the stocking on the Apalachicola-Chattahoochee-Flint (ACF) river system. 7. Over 87,000 Phase II Gulf striped bass were marked with sequential coded wire tags and stocked in the Apalachicola River. Post-stocking evaluations were conducted at 45 sites in the fall and spring and 8 thermal refuges in the summer. 8. Completed fishery surveys on 4 ponds on Eglin AFB totaling 53 acres, and completed a report with recommendations for future recreational fishery needs. 9. Completed final report for aquatic monitoring at Eglin AFB from 1999 to 2004. 10. Completed a field collection of the endangered Okaloosa darter to be incorporated into a status review to be completed in FY06. 11. Provided technical assistance to the Region 4 National Wildlife Refuge (NWR) program on changes to the fishery conservation targets for the region. Also provided technical assistance to four NWRs (i.e., Okefenokee NWR, Banks Lake NWR, St. Vincent NWR, and St. Marks NWR) relative to hurricanes and recreational fishing. 12. A draft mussel sampling protocol was tested in wadeable streams in Northwest Florida and southwest Georgia, and an associated field guide, poster, and Freshwater Mussel Survey Protocol and Identification workshop were completed in FY05. 13. Implemented recovery plan and candidate conservation actions for 14 listed and candidate freshwater mussels in the Northeast Gulf Watersheds. 14. Initiated or completed multiple stream restoration and watershed management projects. A total of 7.5 stream miles were restored for stream fishes, and 11 miles of coastline were enhanced for sea turtle lighting. A total of 630 acres of wetlands and 2,401 acres of understory habitat were restored. 15. Conducted a watershed assessment to develop a threats analysis for prioritizing restoration, protection, and enhancement to natural resources of Spring Creek, Georgia and Canoe Creek, Florida. 16. Continued the formation of an Unpaved Road Interagency Team of Federal, State, and local agencies in Northwest Florida to promote stream protection and restoration from unpaved road sediment runoff. Began the development of a technical committee agreement. 17. Conducted Alabama Unpaved Road Inventory within the Northeast Gulf Ecosystem. Data collection will be completed during FY06. 18. Finalized the development of two North Florida hydrophysiographic regional curves for use by the Florida Department of Transportation (DOT) and others involved with stream restoration and protection. Initiated the development of the Alabama Coastal Plain Riparian Reference Reach and Regional Curves for use by the Alabama Department of Environmental Management (ADEM). 19. Provided technical assistance in collecting data, analysis, and thesis formulation with Troy University, Alabama, to identify the influence of large woody debris in southeastern coastal plain streams. 20. Completed pre- and post-restoration fish community monitoring at several restoration projects including Big Escambia Creek, Magnolia Creek, and Oyster Lake, Florida. 21. Established a watershed partnership for the Chipola River in Alabama and Florida and expanded development and participation in the Spring Creek Watershed Partnership, Georgia. 22. Continued to identify barriers which inhibit the movement of aquatic species within the Northeast Gulf Ecoregion. 23. Completed a report on road crossing structures in Okaloosa darter streams to guide the closure/repair/maintenance of roads to contribute to recovery of the endangered species. In cooperation with Three Rivers RC&D Council, fish passage sites identified in the report were prioritized for restoration. 24. Monitored Aquatic Nuisance Species in the Apalachicola River and tested the sterility of exotic grass carp. 25. Multiple outreach projects were completed to detail aquatic resources conservation needs and opportunities. Participated in National Fishing Week event, several festivals, and school outreach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was undertaken to study the physicochemical characteristics, phytoplankton and fish fauna of three major deep lakes on the River Mahaweli: Kotmale, Victoria and Randenigala. These lakes were created mainly for hydroelectric purposes during the period 1984 to 1986. In all three lakes, thermoclines were present during most months of the year, but did not appear to be very stable. They tended to disappear during January - February but were well established in August - November. Fifteen species of blue-green algae were identified as well as 27 desmid species and 25 non-desmid green algae. Melosira granulata and M. undulata were the dominant diatom species. The family Cyprinidae dominated the fish fauna by number of species, but by biomass the exotic cichlids (tilapias) were dominant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intensities and relative abundances of galactic cosmic ray protons and antiprotons have been measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. The IMAX payload had a successful flight from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified by mass and charge via the Cherenkov-Rigidity and TOP-Rigidity techniques, with measured rms mass resolution ≤0.2 amu for Z=1 particles.

Cosmic ray antiprotons are of interest because they can be produced by the interactions of high energy protons and heavier nuclei with the interstellar medium as well as by more exotic sources. Previous cosmic ray antiproton experiments have reported an excess of antiprotons over that expected solely from cosmic ray interactions.

Analysis of the flight data has yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons in the energy range 0.97-2.58 GeV, and 22524 protons and 5 antiprotons in the energy range 2.58-3.08 GeV. These measurements are a statistical improvement over previous antiproton measurements, and they demonstrate improved separation of antiprotons from the more abundant fluxes of protons, electrons, and other cosmic ray species.

When these results are corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p=3.21(+3.49, -1.97)x10^(-5) in the energy range 0.25-1.00 GeV, p/p=5.38(+3.48, -2.45) x10^(-5) in the energy range 1.00-2.61 GeV, and p/p=2.05(+1.79, -1.15) x10^(-4) in the energy range 2.61-3.11 GeV. The corresponding antiproton intensities, also corrected to the top of the atmosphere, are 2.3(+2.5, -1.4) x10^(-2) (m^2 s sr GeV)^(-1), 2.1(+1.4, -1.0) x10^(-2) (m^2 s sr GeV)^(-1), and 4.3(+3.7, -2.4) x10^(-2) (m^2 s sr GeV)^(-1) for the same energy ranges.

The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations of the cosmic ray antiproton abundance. According to this model, cosmic ray antiprotons are secondary cosmic rays arising solely from the interaction of high energy cosmic rays with the interstellar medium. The effects of solar modulation of protons and antiprotons are also calculated, showing that the antiproton/proton ratio can vary by as much as an order of magnitude over the solar cycle. When solar modulation is taken into account, the IMAX antiproton measurements are found to be consistent with the most recent calculations of the SLBM. No evidence is found in the IMAX data for excess antiprotons arising from the decay of galactic dark matter, which had been suggested as an interpretation of earlier measurements. Furthermore, the consistency of the current results with the SLBM calculations suggests that the mean antiproton lifetime is at least as large as the cosmic ray storage time in the galaxy (~10^7 yr, based on measurements of cosmic ray ^(10)Be). Recent measurements by two other experiments are consistent with this interpretation of the IMAX antiproton results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When studying physical systems, it is common to make approximations: the contact interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is constant with velocity, or the position of a particle is exactly known are just a few examples. These approximations help us simplify complex systems to make them more comprehensible while still demonstrating interesting physics. But what happens when these assumptions break down? This question becomes particularly interesting in the materials science community in designing new materials structures with exotic properties In this thesis, we study the mechanical response and dynamics in granular crystals, in which the approximation of linearity and infinite size break down. The system is inherently finite, and contact interaction can be tuned to access different nonlinear regimes. When the assumptions of linearity and perfect periodicity are no longer valid, a host of interesting physical phenomena presents itself. The advantage of using a granular crystal is in its experimental feasibility and its similarity to many other materials systems. This allows us to both leverage past experience in the condensed matter physics and materials science communities while also presenting results with implications beyond the narrower granular physics community. In addition, we bring tools from the nonlinear systems community to study the dynamics in finite lattices, where there are inherently more degrees of freedom. This approach leads to the major contributions of this thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile can be tuned from highly localized to completely delocalized by simply tuning an external parameter. Using the sensitive dynamics near bifurcation points, we present a completely new approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the force-displacement relation. Other contributions include demonstrating nonlinear breakdown of mechanical filters as a result of finite size, and the presents of frequency attenuation bands in essentially nonlinear materials. We finish by presenting two new energy harvesting systems based on our experience with instabilities in weakly nonlinear systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.

An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).

The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.

A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.

Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.

Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An exciting frontier in quantum information science is the integration of otherwise "simple'' quantum elements into complex quantum networks. The laboratory realization of even small quantum networks enables the exploration of physical systems that have not heretofore existed in the natural world. Within this context, there is active research to achieve nanoscale quantum optical circuits, for which atoms are trapped near nano-scopic dielectric structures and "wired'' together by photons propagating through the circuit elements. Single atoms and atomic ensembles endow quantum functionality for otherwise linear optical circuits and thereby enable the capability of building quantum networks component by component. Toward these goals, we have experimentally investigated three different systems, from conventional to rather exotic systems : free-space atomic ensembles, optical nano fibers, and photonics crystal waveguides. First, we demonstrate measurement-induced quadripartite entanglement among four quantum memories. Next, following the landmark realization of a nanofiber trap, we demonstrate the implementation of a state-insensitive, compensated nanofiber trap. Finally, we reach more exotic systems based on photonics crystal devices. Beyond conventional topologies of resonators and waveguides, new opportunities emerge from the powerful capabilities of dispersion and modal engineering in photonic crystal waveguides. We have implemented an integrated optical circuit with a photonics crystal waveguide capable of both trapping and interfacing atoms with guided photons, and have observed the collective effect, superradiance, mediated by the guided photons. These advances provide an important capability for engineered light-matter interactions, enabling explorations of novel quantum transport and quantum many-body phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Topological superconductors are particularly interesting in light of the active ongoing experimental efforts for realizing exotic physics such as Majorana zero modes. These systems have excitations with non-Abelian exchange statistics, which provides a path towards topological quantum information processing. Intrinsic topological superconductors are quite rare in nature. However, one can engineer topological superconductivity by inducing effective p-wave pairing in materials which can be grown in the laboratory. One possibility is to induce the proximity effect in topological insulators; another is to use hybrid structures of superconductors and semiconductors.

The proposal of interfacing s-wave superconductors with quantum spin Hall systems provides a promising route to engineered topological superconductivity. Given the exciting recent progress on the fabrication side, identifying experiments that definitively expose the topological superconducting phase (and clearly distinguish it from a trivial state) raises an increasingly important problem. With this goal in mind, we proposed a detection scheme to get an unambiguous signature of topological superconductivity, even in the presence of ordinarily detrimental effects such as thermal fluctuations and quasiparticle poisoning. We considered a Josephson junction built on top of a quantum spin Hall material. This system allows the proximity effect to turn edge states in effective topological superconductors. Such a setup is promising because experimentalists have demonstrated that supercurrents indeed flow through quantum spin Hall edges. To demonstrate the topological nature of the superconducting quantum spin Hall edges, theorists have proposed examining the periodicity of Josephson currents respect to the phase across a Josephson junction. The periodicity of tunneling currents of ground states in a topological superconductor Josephson junction is double that of a conventional Josephson junction. In practice, this modification of periodicity is extremely difficult to observe because noise sources, such as quasiparticle poisoning, wash out the signature of topological superconductors. For this reason, We propose a new, relatively simple DC measurement that can compellingly reveal topological superconductivity in such quantum spin Hall/superconductor heterostructures. More specifically, We develop a general framework for capturing the junction's current-voltage characteristics as a function of applied magnetic flux. Our analysis reveals sharp signatures of topological superconductivity in the field-dependent critical current. These signatures include the presence of multiple critical currents and a non-vanishing critical current for all magnetic field strengths as a reliable identification scheme for topological superconductivity.

This system becomes more interesting as interactions between electrons are involved. By modeling edge states as a Luttinger liquid, we find conductance provides universal signatures to distinguish between normal and topological superconductors. More specifically, we use renormalization group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as a lead. Interestingly, arbitrarily weak interactions induce qualitative changes in the behavior relative to the free-fermion limit, leading to a sharp dichotomy in conductance for the trivial (narrow superconductor) and topological (wide superconductor) cases. Furthermore, we find that strong interactions can in principle induce parafermion excitations at a superconductor/quantum spin Hall junction.

As we identify the existence of topological superconductor, we can take a step further. One can use topological superconductor for realizing Majorana modes by breaking time reversal symmetry. An advantage of 2D topological insulator is that networks required for braiding Majoranas along the edge channels can be obtained by adjoining 2D topological insulator to form corner junctions. Physically cutting quantum wells for this purpose, however, presents technical challenges. For this reason, I propose a more accessible means of forming networks that rely on dynamically manipulating the location of edge states inside of a single 2D topological insulator sheet. In particular, I show that edge states can effectively be dragged into the system's interior by gating a region near the edge into a metallic regime and then removing the resulting gapless carriers via proximity-induced superconductivity. This method allows one to construct rather general quasi-1D networks along which Majorana modes can be exchanged by electrostatic means.

Apart from 2D topological insulators, Majorana fermions can also be generated in other more accessible materials such as semiconductors. Following up on a suggestion by experimentalist Charlie Marcus, I proposed a novel geometry to create Majorana fermions by placing a 2D electron gas in proximity to an interdigitated superconductor-ferromagnet structure. This architecture evades several manufacturing challenges by allowing single-side fabrication and widening the class of 2D electron gas that may be used, such as the surface states of bulk semiconductors. Furthermore, it naturally allows one to trap and manipulate Majorana fermions through the application of currents. Thus, this structure may lead to the development of a circuit that enables fully electrical manipulation of topologically-protected quantum memory. To reveal these exotic Majorana zero modes, I also proposed an interference scheme to detect Majorana fermions that is broadly applicable to any 2D topological superconductor platform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lake Victoria fish fauna was dominated by cichlids before the establishment of the exotic species Oreochromis niloticus (L.) and Latus niloticus (L.). With the alterations in the ecology of Lake Victoria, changes may be expected to occur in the population dynamics of the fish species. In two zones of Lake Victoria, the size structure, distribution and abundance, condition factors, length-weight relationship and sex ratios of O. niloticus were determined. Larger fish were found in zone II than in zone III, where very few larger fish were recorded. More O. niloticus were caught in zone III, especially in Itome Bay, than in zone II but catch by weight was greater in zone II. More males than females were encountered in both zones. Oreochromis niloticus had similar condition factors in both zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CASTELLANO. La introducción de especies exóticas invasoras es una de las causas más importantes de pérdida de biodiversidad. Baccharis halimifolia es una de las 20 especies exóticas invasoras mas perjudiciales en España e invade gran parte de la marisma de Urdaibai. En dicha marisma se aplicaron tratamientos de control mediante la corta y aplicación de herbicida (glifosato) tras los cuales se observó un variable porcentaje de rebrote en función de la salinidad edáfica. Se realizó un experimento en el que las plantas recolectadas en las parcelas tratadas fueron sometidas en el invernadero a un tratamiento de salinidad y a otro de glifosato con el fin de estudiar la interacción entre ambos tratamientos en individuos originados por germinación y por rebrote y las posibles diferencias entre sexos. Se estudiaron los parámetros de biomasa y acumulación de iones sodio. No se han observado diferencias significativas entre los sexos para ninguno de los parámetros. Sin embargo, los rebrotes acumulan más Na+ que los individuos procedentes de germinación y su biomasa disminuye significativamente tras la aplicación de glifosato, únicamente en medio no salino. Nuestros resultados sugieren que los rebrotes de B. halimifolia reaccionan en mayor medida a la salinidad y al glifosato, lo que proporciona información de interés para la gestión.