999 resultados para Espaces De Fonctions Cp (x)
Resumo:
Both semiempirical and ab initio calculations are reported for conformational studies of a series of alpha-substituted acetones CH3COCH2XCH3 where X = CH2, O or S and of phenacyl sulfide PhCOCH2SCH3. For conformational studies in the lowest triplet state of these molecules, the MINDO/3 method was employed in the unrestricted Hartree-Fock frame. Results reveal that rotation around a bond alpha to the carbonyl group is more favourable than that around the beta bond. The preferred conformations in the lowest triplet state are nearly the same as in the ground state.
Resumo:
Coupled substitution of Nb(V) and Si(IV) for Ti(IV) and P(V)/As(V) in KTiOP04 (KTP) and KTiOAsO4 (KTA) giving new series of nonlinear optical materials, KTi1-xNbxOX1-xSixO4 (X=P,As), has been investigated. Substitution up to x = 0.40 readily occurs, the members retaining the orthorhombic (Pna2(1)) structure of KTP. The second harmonic generation (SHG) property of the parent KTP and KTA is not adversely affected by the coupled substitution. SHG intensity of the powder samples of the X = P series shows a slight increase with x up to x = 0.15; for 0.15 < x less-than-or-equal-to 0.40, there is a decrease in SHG intensity as compared to that for KTP. A similar trend in SHG intensity is seen for the arsenic analogs.
Resumo:
Reaction of Cu2(O2CMe)4(H2O)2 with 1,2-diaminoethane(en) in ethanol, followed by the addition of NH4PF6, led to the formation of a covalently linked 1D polymeric copper(II) title complex showing alternating [Cu2(en)2(OH)22+] and [Cu2(O2CMe)4] units in the chain and the shortest Cucdots, three dots, centeredCu separation of 2.558(2) Å in the tetraacetato core.
Resumo:
Crystals suitable for high resolution X-ray diffraction analysis have been grown of the 29,774-Da protein, xylanase (1,-4-beta-xylan xylanohydrolase EC 3.2.1.8) from the thermophilic fungus Thermoascus aurantiacus. This protein, an endoxylanase demonstrates the hydrolysis of β-(1-4)-Image -xylose linkage in xylans and crystallizes as monoclinic pinacoids in the presence of ammonium sulphate buffered at pH 6·5, and also with neutral polyethylene glycol 6000. The crystals belong to space group P 21 and have cell dimensions, a = 41·2 Å, b = 67·76 Å, c = 51·8 Å; β = 113·2°.
Effect of High Pressure on the Electrical Conductivity of TlInX2 (X = Se, Te) Layered Semiconductors
Resumo:
The dc electrical conductivity of TlInX2 (X = Se, Te) single crystals, parallel and perpendicular to the (001) c-axis is studied under high quasi-hydrostatic pressure up to 7.0 GPa, at room temperature. Conductivity measurements parallel to the c-axis are carried out at high pressures and down to liquid nitrogen temperatures. These materials show continuous metallization under pressure. Both compounds have almost the same pressure coefficient of the electrical activation energy parallel to the c-axis, d(ΔE∥)/dP = −2.9 × 10−10 eV/Pa, which results from the narrowing of the band gap under pressure. The results are discussed in the light of the band structure of these compounds.
Resumo:
The specific heat Cp of glassy Ge20Se80−xBix (0 ≤ × ≤ 12) samples is investigated. The Cp at 323K and the ΔCp at glass transition temperature Tg1 show anomalous features around x = 8 at.%, where p−n conduction type inversion also take place. These features are discussed in the light of Phillips model of phase separation in these glasses at the microscopic level.
Resumo:
The asymmetric dicopper(II) title complex with a [Cu2(μ-O2CMe)22+ core was isolated from the reaction between Cu2(μ-O2CMe)4(H2O)2 and bipy in EtOH in the presence of NH4PF6 and has been characterized by X-ray diffraction analysis.
Resumo:
The authors have measured longitudinal and transverse magnetoresistance (MR) of crystalline pseudo-binary alloys FexNi80-xCr20 (50
Resumo:
Inovirus is a helical array of agr-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.
Resumo:
Proton spin—lattice relaxation time (T1) is measured in [N(CH3)4]PbX3 (X=Cl, Br, I) from 300-77 K at 9.75 MHz. All the compounds show discontinuous changes in T1 values (at 256, 270 and 277 K, respectively), indicating phase transitions. Single T1 minimum is observed in all the cases and the T1 variation is explained in terms of [N(CH3)4] and CH3 group dynamics. The activation energy Eα decreases from chloride to iodide (from 4 to 2 kcal/mol). In bromide and iodide, T1 is found to decrease with increase in temperature at higher temperatures, indicating the presence of spin—rotation interaction.
Resumo:
An air-stable and water-soluble diastereomeric half-sandwich ruthenium(I1) complex, [Ru(s-MeCsH4Pr'-p)(H*O)-(L*)] (C104) (l), has been isolated and structurally characterized [HL* = (27)-(a methylbenzyl)salicylaldimine,2-HOC6H4CH-NCHMePhI. Complex 1, Czd-I3oNO&lRu, crystallizes in the noncentric triclinic space group P1 with a = 9.885(1) A, b = 10.185(1) A, c = 14.187(2) A, a = 110.32(1)', 6 = 102.17(1)', y = 102.41(1)O, V=1243( 1) A3, and 2 = 2. The X-ray structure shows the presence of two diastereomers in a 1:l ratio having RR,,,SCand SR,,,&c onfigurations. The Ru-OHz bond distances are considerably long, and the values for RR, - a~n d SRu-1isomers are 2.1 19(5) and 2.203(5) A, respectively. The aqua complex (1) exists as a single diastereomer in solution,and it forms stable adducts with P-, N-, and halide-donor ligands. The stereochemical changes associated with adduct-forming reactions follow an inversion order: PPhs >> P(OMe)3 > pyridine bases >> halides (I, Br, Cl) >H20.
Resumo:
The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.
Synthesis, characterization, and thermal degradation studies on group VIA derived weak-link polymers
Resumo:
Polymers containing group VIA derived weak links, viz. poly(styrene disulfide) (PSD), poly- (styrene tetrasulfide) (PST), and poly(styrene diselenide) (PSDSE), have been synthesized. The polymers PSD and PST were characterized by NMR, IR, UV, TGA, and fast atom bombardment m w spectrometric (FABMS) techniques. The presence of different configurational sequences in PSD and PST were identified by *3C NMR spectroscopy. PSDSE, being insoluble in common organic solvents, was characterized using solid-state lac NMR (CP-MAS) spectroscopy. Thermal degradation of polymers under direct pyrolysis-mass spectrometric (DP-MS) conditions revealed that all the polymers undergo degradation through the weaklink scission. A comparative study of the pyrolysis products of these polymers with that of poly(styrene peroxide) (PSP) revealed a smooth transformation down the group with no monomer (styrene or oxygen) formation in PSP to only styrene and selenium metal in PSDSE. This trend of group VIA is explained from the energetics of the C-X bond (X = 0, S, and Se) which also seems to be important in addition to the weak X-X bond cleavage. In PSP and PSD, the behavior is also explained from the energetics of the alkoxy and thiyl radicals. The unique exothermic degradation in PSP compared to endothermic degradation in PSD and PSDSE is explained from the nature of the producta of degradation.
Resumo:
Layered perovskite oxides of the formula ACa~,La,Nb3-,Ti,010 (A = K, Rb, Cs and 0 < x d 2) have been prepared. The members adopt the structures of the parent ACazNb3010. Interlayer alkali cations in the niobium-titanium oxide series can be ion-exchanged with Li+, Na+, NH4+, or H+ to give new derivatives. Intercalation of the protonated derivatives with organic bases reveals that the Bronsted acidity of the solid solution series, HC~ ~ , L ~ ,N~ ~ , T ~ ,dOep~eOnd, s on the titanium content. While the x = 1 member (HCaLaNbzTiOlo) is nearly as acidic as the parent HCazNb3010, the x = 2 member (HLazNbTizOlo) is a weak acid hardly intercalating organic bases with pKa - 11.3. The variation of acidity is probably due to an ordering of Nb/Ti atoms in the triple octahedral perovskite slabs, [Ca~,La,Nb~,Ti,0~0], such that protons are attached to NbO6 octahedra in the x = 1 member and to Ti06 octahedra in the x = 2 member.
Resumo:
X-ray diffraction line profile analysis (XRDLPA) techniques have been applied to investigate the deformed microstructure of a recently developed boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) S-1 and 1 S-1). Microstructural parameters like average domain size, average microstrain within the domain and dislocation density of the two phases were determined using X-ray diffraction line profile analysis. The results indicate an increase in the microstrain and dislocation density for the alpha-phase and decrease for the beta-phase in the case of boron modified alloys as compared to the normal material. Microstructural modifications viz, the grain refinement and the presence of hard, brittle TiB particles in the case of boron modified alloy are held responsible for the observed difference in the dislocation density. (C) 2010 Elsevier Inc. All rights reserved.