945 resultados para Epithelial-mesenchymal crosstalk
Resumo:
Chronic obstructive pulmonary disease (COPD) is a lethal progressive lung disease culminating in permanent airway obstruction and alveolar enlargement. Previous studies suggest CTL involvement in COPD progression; however, their precise role remains unknown. Here, we investigated whether the CTL activation receptor NK cell group 2D (NKG2D) contributes to the development of COPD. Using primary murine lung epithelium isolated from mice chronically exposed to cigarette smoke and cultured epithelial cells exposed to cigarette smoke extract in vitro, we demonstrated induced expression of the NKG2D ligand retinoic acid early tran - script 1 (RAET1)as well as NKG2D-mediated cytotoxicity. Furthermore, a genetic model of inducible RAET1 expression on mouse pulmonary epithelial cells yielded a severe emphysematous phenotype characterized by epithelial apoptosis and increased CTL activation, which was reversed by blocking NKG2D activation. We also assessed whether NKG2D ligand expression corresponded with pulmonary disease in human patients by staining airway and peripheral lung tissues from never smokers, smokers with normal lung function, and current and former smokers with COPD. NKG2D ligand expression was independent of NKG2D receptor expression in COPD patients, demonstrating that ligand expression is the limiting factor in CTL activation. These results demonstrate that aberrant, persistent NKG2D ligand expression in the pulmonary epithelium contributes to the development of COPD pathologies.
Resumo:
In vitro differentiation of mesenchymal stromal cells (MSC) into osteocytes (human differentiated osteogenic cells, hDOC) before implantation has been proposed to optimize bone regeneration. However, a deep characterization of the immunological properties of DOC, including their effect on dendritic cell (DC) function, is not available. DOC can be used either as cellular suspension (detached, Det-DOC) or as adherent cells implanted on scaffolds (adherent, Adh-DOC). By mimicking in vitro these two different routes of administration, we show that both Det-DOC and Adh-DOC can modulate DC functions. Specifically, the weak downregulation of CD80 and CD86 caused by Det-DOC on DC surface results in a weak modulation of DC functions, which indeed retain a high capacity to induce T-cell proliferation and to generate CD4(+)CD25(+)Foxp3(+) T cells. Moreover, Det-DOC enhance the DC capacity to differentiate CD4(+)CD161(+)CD196(+) Th17-cells by upregulating IL-6 secretion. Conversely, Adh-DOC strongly suppress DC functions by a profound downregulation of CD80 and CD86 on DC as well as by the inhibition of TGF-β production. In conclusion, we demonstrate that different types of DOC cell preparation may have a different impact on the modulation of the host immune system. This finding may have relevant implications for the design of cell-based tissue-engineering strategies.
Resumo:
The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC). To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD), was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.
Cadmium uptake and induction of metallothionein synthesis in a renal epithelial cell line (LLC-PK1).
Resumo:
LLC-PK1 cells, an established cell line from pig kidney with proximal tubule properties, were cultivated in vitro at confluence on plastic dishes. They were then exposed (apical side) to inorganic cadmium (CdCl2, 5 microM) for periods ranging between 1 to 24 h. Analysis of the cell supernatant after homogenisation and ultracentrifugation indicated that Cd taken up in the first 3 h was bound to cytosolic high molecular weight proteins, but was redistributed to low molecular weight proteins at later stages. Induction of Cd-metallothionein (Cd-Mt) synthesis, as judged from Cd-Mt binding to a specific anti-Cd-Mt antibody and from the rate of 35S-cys incorporation into a specific protein fraction, was apparent 3-6 h after the addition of Cd to the incubation medium.
Resumo:
Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.
Resumo:
Colorectal cancer (CRC) is a frequently lethal disease with heterogeneous outcomes and drug responses. To resolve inconsistencies among the reported gene expression-based CRC classifications and facilitate clinical translation, we formed an international consortium dedicated to large-scale data sharing and analytics across expert groups. We show marked interconnectivity between six independent classification systems coalescing into four consensus molecular subtypes (CMSs) with distinguishing features: CMS1 (microsatellite instability immune, 14%), hypermutated, microsatellite unstable and strong immune activation; CMS2 (canonical, 37%), epithelial, marked WNT and MYC signaling activation; CMS3 (metabolic, 13%), epithelial and evident metabolic dysregulation; and CMS4 (mesenchymal, 23%), prominent transforming growth factor-β activation, stromal invasion and angiogenesis. Samples with mixed features (13%) possibly represent a transition phenotype or intratumoral heterogeneity. We consider the CMS groups the most robust classification system currently available for CRC-with clear biological interpretability-and the basis for future clinical stratification and subtype-based targeted interventions.
Resumo:
Inflammatory bowel diseases (IBD) are relatively frequent in developed countries. Physiopathological events involved in the etiology of IBDs include activation of immune, mesenchymal and epithelial cells. This review gives an overview of the currently applied proteomics technologies. It describes metabolic changes and goes into the approaches using this methodology to understand the molecular mechanisms implicated in the development of the disease.
Resumo:
BACKGROUND: An inverse correlation between expression of the aldehyde dehydrogenase 1 subfamily A2 (ALDH1A2) and gene promoter methylation has been identified as a common feature of oropharyngeal squamous cell carcinoma (OPSCC). Moreover, low ALDH1A2 expression was associated with an unfavorable prognosis of OPSCC patients, however the causal link between reduced ALDH1A2 function and treatment failure has not been addressed so far. METHODS: Serial sections from tissue microarrays of patients with primary OPSCC (n = 101) were stained by immunohistochemistry for key regulators of retinoic acid (RA) signaling, including ALDH1A2. Survival with respect to these regulators was investigated by univariate Kaplan-Meier analysis and multivariate Cox regression proportional hazard models. The impact of ALDH1A2-RAR signaling on tumor-relevant processes was addressed in established tumor cell lines and in an orthotopic mouse xenograft model. RESULTS: Immunohistochemical analysis showed an improved prognosis of ALDH1A2(high) OPSCC only in the presence of CRABP2, an intracellular RA transporter. Moreover, an ALDH1A2(high)CRABP2(high) staining pattern served as an independent predictor for progression-free (HR: 0.395, p = 0.007) and overall survival (HR: 0.303, p = 0.002), suggesting a critical impact of RA metabolism and signaling on clinical outcome. Functionally, ALDH1A2 expression and activity in tumor cell lines were related to RA levels. While administration of retinoids inhibited clonogenic growth and proliferation, the pharmacological inhibition of ALDH1A2-RAR signaling resulted in loss of cell-cell adhesion and a mesenchymal-like phenotype. Xenograft tumors derived from FaDu cells with stable silencing of ALDH1A2 and primary tumors from OPSCC patients with low ALDH1A2 expression exhibited a mesenchymal-like phenotype characterized by vimentin expression. CONCLUSIONS: This study has unraveled a critical role of ALDH1A2-RAR signaling in the pathogenesis of head and neck cancer and our data implicate that patients with ALDH1A2(low) tumors might benefit from adjuvant treatment with retinoids.
Resumo:
Seventy-five percent of breast cancers are estrogen receptor α positive (ER(+)). Research on these tumors is hampered by lack of adequate in vivo models; cell line xenografts require non-physiological hormone supplements, and patient-derived xenografts (PDXs) are hard to establish. We show that the traditional grafting of ER(+) tumor cells into mammary fat pads induces TGFβ/SLUG signaling and basal differentiation when they require low SLUG levels to grow in vivo. Grafting into the milk ducts suppresses SLUG; ER(+) tumor cells develop, like their clinical counterparts, in the presence of physiological hormone levels. Intraductal ER(+) PDXs are retransplantable, predictive, and appear genomically stable. The model provides opportunities for translational research and the study of physiologically relevant hormone action in breast carcinogenesis.
Resumo:
Acute lung injury (ALI) is a clinical manifestation of respiratory failure, caused by lung inflammation and the disruption of the alveolar-capillary barrier. Preservation of the physical integrity of the alveolar epithelial monolayer is of critical importance to prevent alveolar edema. Barrier integrity depends largely on the balance between physical forces on cell-cell and cell-matrix contacts, and this balance might be affected by alterations in the coagulation cascade in patients with ALI. We aimed to study the effects of activated protein C (APC) on mechanical tension and barrier integrity in human alveolar epithelial cells (A549) exposed to thrombin. Cells were pretreated for 3 h with APC (50 mg/ml) or vehicle (control). Subsequently, thrombin (50 nM) or medium was added to the cell culture. APC significantly reduced thrombin-induced cell monolayer permeability, cell stiffening, and cell contraction, measured by electrical impedance, optical magnetic twisting cytometry, and traction microscopy, respectively, suggesting a barrier-protective response. The dynamics of the barrier integrity was also assessed by western blotting and immunofluorescence analysis of the tight junction ZO-1. Thrombin resulted in more elongated ZO-1 aggregates at cell-cell interface areas and induced an increase in ZO-1 membrane protein content. APC attenuated the length of these ZO-1 aggregates and reduced the ZO-1 membrane protein levels induced by thrombin. In conclusion, pretreatment with APC reduced the disruption of barrier integrity induced by thrombin, thus contributing to alveolar epithelial barrier protection.
Resumo:
Intestinal infection with Salmonella enterica serotype Enteritidis, a food-borne infection spread to humans especially through contaminated eggs and egg-products as well as undercooked contaminated fresh meat, is the most common cause of intestinal inflammation in the European Union. Enteritis caused by Salmonella Enteritidis is characterized by fever, diarrhoea and abdominal pain. The disruption of the intestinal epithelial barrier function contributes to diarrhoea and is responsible for the perpetuation of the inflammatory process. In this sense, oxidative stress and the proinflammatory cytokines TNF-α, IFN-γ and IL-1β are described to induce the disorganization of the tight junctions (TJ), the most apical epithelial intercellular junctions and responsible for the paracellular permeability. The interest of this chapter relies not only in the investigation dealing with the mechanisms of TJ regulation but also in the contribution to the development of new tools for the prevention of epithelial barrier disruption in enteritis caused by Salmonella Enteritidis.
Resumo:
The aim of this study was to characterize the cellular mechanisms leading to the beneficial effect of anti-oxidative gene therapy and pro-angiogenic stem cell therapy in acute peripheral ischemia. Post-ischemic events aim to re-establish tissue blood perfusion, to clear cellular debris, and to regenerate lost tissue by differentiation of satellite cells into myoblasts. Although leukocytes have an essential role in clearing cellular debris and promoting angiogenesis, they also contribute to tissue injury through excessive ROS production. First, we investigated the therapeutic properties of extracellular superoxide dismutase (SOD3) gene transfer. SOD3 was shown to reduce oxidative stress, to normalize glucose metabolism, and to enhance cell proliferation in the ischemic muscle. Analysis of the mitogenic Ras-Erk1/2 pathway showed SOD3 mediated induction offering a plausible explanation for enhanced cell proliferation. In addition, SOD3 reduced NF-κB activity by enhancing IκBα expression thus leading to reduced expression of inflammatory cytokines and adhesion molecules with consequent reduction in macrophage infiltration. Secondly, we sought to determine the fate and the effect of locally transplanted mesenchymal stem/stromal cells (MSCs) in acute ischemia. We showed that a vast majority of the transplanted cells are cleared from the injury site within 24 hours after local transplantation. Despite rapid clearance, transplantation was able to temporarily promote angiogenesis and cell proliferation in the muscle. Lack of graft-derived growth factor expression suggests other than secretory function to mediate this observed effect. In conclusion, both SOD3 and MSCs could be utilized to alleviate peripheral ischemia induced tissue injury. We have described a previously unidentified growth regulatory role for SOD3, and suggest a novel mechanism whereby transplanted MSCs enhance the reparative potential of the recipient tissue through physical contacts.
Resumo:
PURPOSES: To determine the basic expression of ABC transporters in an epithelial ovarian cancer cell line, and to investigate whether low concentrations of acetaminophen and ibuprofen inhibited the growth of this cell line in vitro. METHODS: TOV-21 G cells were exposed to different concentrations of acetaminophen (1.5 to 15 μg/mL) and ibuprofen (2.0 to 20 μg/mL) for 24 to 48 hours. The cellular growth was assessed using a cell viability assay. Cellular morphology was determined by fluorescence microscopy. The gene expression profile of ABC transporters was determined by assessing a panel including 42 genes of the ABC transporter superfamily. RESULTS: We observed a significant decrease in TOV-21 G cell growth after exposure to 15 μg/mL of acetaminophen for 24 (p=0.02) and 48 hours (p=0.01), or to 20 μg/mL of ibuprofen for 48 hours (p=0.04). Assessing the morphology of TOV-21 G cells did not reveal evidence of extensive apoptosis. TOV-21 G cells had a reduced expression of the genes ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 within the ABC transporter superfamily. CONCLUSIONS: This study provides in vitro evidence of inhibitory effects of growth in therapeutic concentrations of acetaminophen and ibuprofen on TOV-21 G cells. Additionally, TOV-21 G cells presented a reduced expression of the ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 transporters.