916 resultados para Energy and Fluids
Resumo:
Hearings held: May 10-July 19, 1979.
Resumo:
Hearings on S.95-97.
Resumo:
"Publication no. 97-79."
Resumo:
"Publication no. 97-111."
Resumo:
Distributed to some depository libraries in microfiche.
Resumo:
"Coeur D'Alene, Idaho, August 16, 1983; Lewiston, Idaho, August 17, 1983"--Pt. 2.
Resumo:
"June 23, 1988"--pt. 2.
Resumo:
"February 28, 1989"--Pt. 1.
Resumo:
Shipping list no.: 90-134-P (pt. 1).
Resumo:
Shipping list no.: 90-394-P.
Resumo:
"B-236358.3"--P. [1]
Resumo:
"B-246480"--p. 1.
Resumo:
Freshwater Bay (FWB), Washington did not undergo significant erosion of its shoreline after the construction of the Elwha and Glines Canyon Dams, unlike the shoreline east of Angeles Point (the Elwha River’s lobate delta). In this paper I compare the wave energy density in the western and eastern ends of the Strait of Juan de Fuca with the wave energy density at the Elwha River delta. This indicates seasonal high- and low-energy regimes in the energy density data. I group multi-year surveys of four cross-shore transects in FWB along this seasonal divide and search for seasonal trends in profile on the foreshore. After documenting changes in elevation at specific datums on the foreshore, I compare digital images of one datum to determine the particle sizes that are transported during deposition and scour events on this section of the FWB foreshore. Repeat surveys of four cross-shore transects over a five-year period indicate a highly mobile slope break between the upper foreshore and the low-tide delta. Post-2011, profiles in eastern FWB record deposition in the landward portion of the low-tide terrace and also in the upper intertidal. Western FWB experiences transient deposition on the low-tide terrace and high intra-annual variability in beach profile. Profile elevation at the slope break in western FWB can vary 0.5 m in the course of weeks. Changes in surface sediment that range from sand to cobble are co-incident with these changes in elevation. High sediment mobility and profile variation are inconsistent with shoreline stability and decreased sediment from the presumed source on the Elwha River delta.
Resumo:
Plastic cracking of cement mortar and concrete is primarily attributable to desiccation by evaporation from unprotected surfaces. This causes high suctions (negative pressures) to develop in the pore water adjacent to these surfaces. Dissolved salts in the pore water can also contribute significantly to suctions. Quantitative expressions are available for all of the components of the total suction. The development of suctions over time is illustrated by the results of desiccation tests conducted on cement mortars, supplemented by data from the literature. It is shown that ambient conditions conducive to plastic cracking can arise almost anywhere, but that the extremely high suctions that develop in mature cement mortar and concrete do not imply that compression failures should occur A high value of fracture energy is derived from data from the desiccation tests that implies that plastic cracking is characterized by a significant zone of plastic straining or microcracking.