856 resultados para Energy Supply-Demand Modeling.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp-96 - a residue which is known to reprotonate the schiff base at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Renewable energy resources are those having a cycling time less than 100 years and are renewed by the nature and their supply exceeds the rate of consumption. Renewable energy systems use resources that are constantly replaced in nature and are usually less polluting. In order to tap the potential of renewable energy sources, there is a need to assess the availability of resources spatially as well as temporally. Geographic Information Systems (GIS) along with Remote Sensing (RS) helps in mapping on spatial and temporal scales of the resources and demand. The spatial database of resource availability and the demand would help in the regional energy planning. This paper discusses the application of geographical information system (GIS) to map the solar potential in Karnataka state, India. Regions suitable for tapping solar energy are mapped on the basis of global solar radiation data, and this analysis provides a picture of the potential. The study identifies that Coastal parts of Karnataka with the higher global solar radiation is ideally suited for harvesting solar energy. The potential analysis reveals that, maximum global solar radiation is in districts such as Uttara Kannada and Dakshina Kannada. Global solar radiation in Uttara Kannada during summer, monsoon and winter are 6.31, 4.40 and 5.48 kWh/sq.m, respectively. Similarly, Dakshina Kannada has 6.16, 3.89 and 5.21 kWh/sq.m during summer, monsoon and winter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Prior work on modeling interconnects has focused on optimizing the wire and repeater design for trading off energy and delay, and is largely based on low level circuit parameters. Hence these models are hard to use directly to make high level microarchitectural trade-offs in the initial exploration phase of a design. In this paper, we propose INTACTE, a tool that can be used by architects toget reasonably accurate interconnect area, delay, and power estimates based on a few architecture level parameters for the interconnect such as length, width (in number of bits), frequency, and latency for a specified technology and voltage. The tool uses well known models of interconnect delay and energy taking into account the wire pitch, repeater size, and spacing for a range of voltages and technologies.It then solves an optimization problem of finding the lowest energy interconnect design in terms of the low level circuit parameters, which meets the architectural constraintsgiven as inputs. In addition, the tool also provides the area, energy, and delay for a range of supply voltages and degrees of pipelining, which can be used for micro-architectural exploration of a chip. The delay and energy models used by the tool have been validated against low level circuit simulations. We discuss several potential applications of the tool and present an example of optimizing interconnect design in the context of clustered VLIW architectures. Copyright 2007 ACM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy systems should be consistent with environmental, economic and social sustainability in order to ensure regional sustainable development. This enhances both current and future potential to meet the human needs and aspirations. Sustainable development, a process of change, in which, the exploitation of resources, the direction of investments , the orientation of technological development and institutional change are in harmony. National energy programme should prioritize the development of renewable energy sources, which offer the potentially huge sources of primary energy. The path for sustainability in the next millennium is the low energy path through wise use of energy. Energy conservation and energy efficiency measures would certainly result in meeting the energy demand with as little as half the primary supply at current levels. This requires profound structural changes in socio-economic and institutional arrangements. Environmentally sound, technically and economically viable energy pathways will sustain human progress in the long term future giving a fair and equitable share of the underprivileged and poor of the developing countries. Renewable energy is considered by some as the only hope for the survival of planet yet by others it is viewed as a marginal resource with limited resource. All too often, however, the facts behind the role that renewable energy can, and will, play in the regional energy scene are disguised or ignored as rival camps distort the evidence to suit their own objectives. It was in the light of this confusion that the Energy Research Group at Centre for Ecological Sciences, Indian Institute of Science undertook investigation in Kolar and Uttara Kannada Districts in Karnataka State, India to identify the potential contribution of several types of renewable energy sources: Solar, Wind, Hydro, Bioenergy, etc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Researchers can use bond graph modeling, a tool that takes into account the energy conservation principle, to accurately assess the dynamic behavior of wireless sensor networks on a continuous basis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

India's energy demand is increasing rapidly with the intensive growth of economy. The electricity demand in India exceeded the availability, both in terms of base load energy and peak availability. The efficient use of energy source and its conversion and utilizations are the viable alternatives available to the utilities or industry. There are essentially two approaches to electrical energy management. First at the supply / utility end (Supply Side Management or SSM) and the other at the consumer end (Demand Side Management or DSM). This work is based on Supply Side Management (SSM) protocol and consists of design, fabrication and testing of a control device that will be able to automatically regulate the power flow to an individual consumer's premise. This control device can monitor the overuse of electricity (above the connected load or contracted demand) by the individual consumers. The present project work specially emphasizes on contract demand of every consumer and tries to reduce the use beyond the contract demand. This control unit design includes both software and hardware work and designed for 0.5 kW contract demand. The device is tested in laboratory and reveals its potential use in the field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

30 p.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

26 p.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the key systems of a Wave Energy Converter for extraction of wave energy is the Power Take-Off (PTO) device. This device transforms the mechanical energy of a moving body into electrical energy. This paper describes the model of an innovative PTO based on independently activated double-acting hydraulic cylinders array. The model has been developed using a simulation tool, based on a port-based approach to model hydraulics systems. The components and subsystems used in the model have been parameterized as real components and their values experimentally obtained from an existing prototype. In fact, the model takes into account most of the hydraulic losses of each component. The simulations show the flexibility to apply different restraining torques to the input movement depending on the geometrical configuration and the hydraulic cylinders on duty, easily modified by a control law. The combination of these two actions allows suitable flexibility to adapt the device to different sea states whilst optimizing the energy extraction. The model has been validated using a real test bench showing good correlations between simulation and experimental tests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It has been predicted that the global demand for fish for human consumption will increase by more than 50% over the next 15 years. The FAO has projected that the increase in supply will originate primarily from marine fisheries, aquaculture and to a lesser extent from inland fisheries, but with a commensurate price increase. However, there are constraints to increased production in both marine and inland fisheries, such as overfishing, overexploitation limited potential increase and environmental degradation due to industrialization. The author sees aquaculture as having the greatest potential for future expansion. Aquaculture practices vary depending on culture, environment, society amd sources of fish. Inputs are generally low-cost, ecologically efficient and the majority of aquaculture ventures are small-scale and family operated. In the future, advances in technology, genetic improvement of cultured species, improvement in nutrition, disease management, reproduction control and environmental management are expected along with opportunities for complimentary activities with agriculture, industrial and wastewater linkages. The main constraints to aquaculture are from reduced access to suitable land and good quality water due to pollution and habitat degradation. Aquaculture itself carries minimal potential for aquatic pollution. State participation in fisheries production has not proven to be the best way to promote the fisheries sector. The role of governments is increasingly seen as creating an environment for economic sectors to make an optimum contribution, through support in areas such as infrastructure, research, training and extension and a legal framework. The author feels that a holistic approach integrating the natural and social sciences is called for when fisheries policy is being examined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This contribution is a summary of the results of the study conducted by the University of the Philippines in the Visayas team from November 1990 to June 1991. The purpose of this research is to estimate demand and output supply elasticities in gillnet and seine fishing in Guimaras Strait (Philippines) and adjacent waters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fish bioenergetics models estimate relationships between energy budgets and environmental and physiological variables. This study presents a generic rockfish (Sebastes) bioenergetics model and estimates energy consumption by northern California blue rockf ish (S. mystinus) under average (baseline) and El Niño conditions. Compared to males, female S. mystinus required more energy because they were larger and had greater reproductive costs. When El Niño conditions (warmer temperatures; lower growth, condition, and fecundity) were experienced every 3−7 years, energy consumption decreased on an individual and a per-recruit basis in relation to baseline conditions, but the decrease was minor (<4% at the individual scale, <7% at the per-recruit scale) compared to decreases in female egg production (12−19% at the individual scale, 15−23% at the per-recruit scale). When mortality in per-recruit models was increased by adding fishing, energy consumption in El Niño models grew more similar to that seen in the baseline model. However, egg production decreased significantly — an effect exacerbated by the frequency of El Niño events. Sensitivity analyses showed that energy consumption estimates were most sensitive to respiration parameters, energy density, and female fecundity, and that estimated consumption increased as parameter uncertainty increased. This model provides a means of understanding rockfish trophic ecology in the context of community structure and environmental change by synthesizing metabolic, demographic, and environmental information. Future research should focus on acquiring such information so that models like the bioenergetics model can be used to estimate the effect of climate change, community shifts, and different harvesting strategies on rockfish energy demands.