838 resultados para Energy Harvesting, Convertitori di potenza, Maximum Power Point Tracking, Applicazioni low power


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Reabilitação Oral - FOAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy sector is a dominant one in Trinidad and Tobago and it plays an important role in the twin-island republicâŸs economy. In 2008, the share of the energy sector in gross domestic product (GDP) amounted to approximately 48% while contributing 57% to total Government revenue. In that same year, the sectorâŸs share of merchandise exports was 88%, made up mainly of refined oil products including petroleum, liquefied natural gas (LNG), and natural gas liquids (Central Bank of Trinidad and Tobago, 2009). Trinidad and Tobago is the main exporter of oil in the Caribbean region and the main producer of liquefied natural gas in Latin America and the Caribbean. The role of the countryâŸs energy sector is, therefore, not limited to serving as the engine of growth for the national economy but also includes providing energy security for the small island developing States of the Caribbean. However, with its hydrocarbon-based economy, Trinidad and Tobago is ranked seventh in the world in terms of carbon dioxide (CO2) emissions per capita, producing an estimated 40 million tonnes of CO2 annually. Almost 90% of these CO2 emissions are attributed directly to the energy sector through petrochemical production (56%), power generation (30%) and flaring (3%). Trinidad and Tobago is a ratified signatory to the United Nations Framework Convention on Climate Change and the Kyoto Protocol. Although, as a non-Annex 1 country, Trinidad and Tobago is not required to cut its greenhouse gas emissions under the Protocol, it is currently finalizing a climate change policy document as well as a national energy policy with specific strategies to address climate change. The present study complements the climate change policy document by providing an economic analysis of the impact that climate change could have on the energy sector in Trinidad and Tobago under the Intergovernmental Panel on Climate Change alternative climate scenarios (A2 and B2) as compared to a baseline situation of no climate change. Results of analyses indicate that, in the short-run, climate change, represented by change in temperature, is not a significant determinant of domestic consumption of energy, electricity in particular, in Trinidad and Tobago. With energy prices subsidized domestically and fixed for years at a time, energy price does not play a role in determining electricity demand. Economic growth, as indicated by Gross Domestic Product (GDP), is the single major determinant of electricity consumption in the short-run. In the long-run, temperature, GDP, and patterns of electricity use, jointly determine electricity consumption. Variations in average annual temperature due to climate change for the A2 scenario are expected to lead to an increase in electricity consumption per capita, equivalent to an annual increase of 1.07% over the 2011 baseline value of electricity consumption per capita. Under the B2 scenario, the average annual increase in electricity consumption per capita over the 2011 baseline value is expected to be 1.01%. The estimated economic impact of climate change on electricity consumption for the period 2011-2050 is valued at US$ 142.88 million under the A2 scenario and US$ 134.83million under the B2 scenario. These economic impact estimates are equivalent to a loss of 0.737% of 2009 GDP under the A2 climate scenario and a loss of 0.695% of 2009 GDP under the B2 scenario. On the energy supply side, sea level rise and storm surges present significant risks to oil installations and infrastructure at the Petroleum Company of Trinidad and Tobago (PETROTRIN) Pointe-a-Pierre facilities (Singh and El Fouladi, 2006). However, data limitations do not permit the conduct of an economic analysis of the impact of projected sea level rise on oil and gas production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho apresenta uma avaliação técnica e econômica para a instalação de um sistema fotovoltaico conectado à rede (SFCR) para a eletrificação do Aeroporto Internacional Val-de-Cans, localizado na cidade de Belém â Pará - Brasil. Trata-se de da avaliação de implantação de um projeto piloto na Região Norte, onde estuda-se a implantação de um SFCR na cobertura do Terminal Aeroportuário, em uma área de aproximadamente 16.000 m<sup>2</sup>. A avaliação técnica foi realizada com auxílio dos dados meteorológicos e do consumo de energia elétrica referentes ao período de 2011 a 2012, da elaboração de duas opções de projeto de SFCR, sendo a primeira proposta com 191 subsistemas utilizando módulos de silício policristalinos, totalizando uma potência nominal de 2,3 MWp (nas condições padrões) e a segunda proposta com 82 subsistemas utilizando módulos de silício amorfo, totalizando uma potência nominal de 1,04 MWp (nas condições padrões). Na avaliação técnica utilizou-se também um software para simular o desempenho dos sistemas propostos durante um ano, destacando-se a avaliação de perfis de irradiância para um dia ensolarado e outro nublado. A avaliação econômica baseou-se nos projetos elaborados, sendo decisiva na escolha do sistema fotovoltaico mais indicado para a implantação, pois a proposta 1 possui um investimento inicial de R$ 14.970.089,48, estimando-se a redução da energia consumida da concessionária pelo terminal aeroportuário em no máximo 34%, referente ao mês com maior irradiação solar, e em 24% no mês com menor irradiação solar. A proposta 1 se pagará, sem o auxílio de outras fontes contribuintes, em aproximadamente 21 anos. Já a proposta 2 possui um custo de investimento inicial de R$ 10.067.826,13, reduzindo a energia consumida da concessionária pelo terminal aeroportuário em no máximo 15% no mês de maior irradiação solar, e em 11% no mês de menor irradiação solar, contudo, essa proposta não se pagará sem o auxílio de outras fontes contribuintes. Como resultado, pretende-se demonstrar o percentual de redução do consumo de energia elétrica fornecida pela concessionária, além de divulgar esta alternativa energética promissora e contribuir para a preservação do meio ambiente.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.