893 resultados para Endogenous switching regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here on the magnetic properties of ZnO:Mn- and ZnO:Co-doped nanoparticles. We have found that the ferromagnetism of ZnO:Mn can be switched on and off by consecutive low-temperature annealings in O2 and N2, respectively, while the opposite phenomenology was observed for ZnO:Co. These results suggest that different defects (presumably n-type for ZnO:Co and p-type for ZnO:Mn) are required to induce a ferromagnetic coupling in each case. We will argue that ferromagnetism is likely to be restricted to a very thin, nanometric layer at the grain surface. These findings reveal and give insight into the dramatic relevance of surface effects to the occurrence of ferromagnetism in ZnO-doped oxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the potential use of zerocrossing information for speech sample estimation. It provides 21 new method tn) estimate speech samples using composite zerocrossings. A simple linear interpolation technique is developed for this purpose. By using this method the A/D converter can be avoided in a speech coder. The newly proposed zerocrossing sampling theory is supported with results of computer simulations using real speech data. The thesis also presents two methods for voiced/ unvoiced classification. One of these methods is based on a distance measure which is a function of short time zerocrossing rate and short time energy of the signal. The other one is based on the attractor dimension and entropy of the signal. Among these two methods the first one is simple and reguires only very few computations compared to the other. This method is used imtea later chapter to design an enhanced Adaptive Transform Coder. The later part of the thesis addresses a few problems in Adaptive Transform Coding and presents an improved ATC. Transform coefficient with maximum amplitude is considered as ‘side information’. This. enables more accurate tfiiz assignment enui step—size computation. A new bit reassignment scheme is also introduced in this work. Finally, sum ATC which applies switching between luiscrete Cosine Transform and Discrete Walsh-Hadamard Transform for voiced and unvoiced speech segments respectively is presented. Simulation results are provided to show the improved performance of the coder

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved color video super-resolution technique using kernel regression and fuzzy enhancement is presented in this paper. A high resolution frame is computed from a set of low resolution video frames by kernel regression using an adaptive Gaussian kernel. A fuzzy smoothing filter is proposed to enhance the regression output. The proposed technique is a low cost software solution to resolution enhancement of color video in multimedia applications. The performance of the proposed technique is evaluated using several color videos and it is found to be better than other techniques in producing high quality high resolution color videos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a business environment that is characterized by intense competition, building customer loyalty has become a key area of focus for most financial institutions. The explosion of the services sector, changing customer demographics and deregulation and emergence of new technology in the financial services industry have had a critical impact on consumers’ financial services buying behaviour. The changes have forced banks to modify their service offerings to customers so as to ensure high levels of customer satisfaction and also high levels of customer retention. Banks have historically had difficulty distinguishing their products from one another because of their relative homogeneity; with increasing competition,the problem has only intensified with no coherent distinguishing theme. Rising wealth, product proliferation, regulatory changes and newer technologies are together making bank switching easier for customers. In order to remain competitive, it is important for banks to retain their customer base. The financial services sector is the foundation for any economy and plays the role of mobilization of resources and their allocation. The retail banking sector in India has emerged as one of the major drivers of the overall banking industry and has witnessed enormous growth. Switching behaviour has a negative impact on the banks’ market share and profitability as the costs of acquiring customers are much higher than the costs of retaining. When customers switch, the business loses the potential for additional profits from the customer the initial costs invested in the customer by the business get . The Objective of the thesis was to examine the relationship among triggers that customers experience, their perceptions of service quality, consumers’ commitment and behavioral intentions in the contemporary India retail banking context through the eyes of the customer. To understand customers’ perception of these aspects, data were collected from retail banking customers alone for the purpose of analysis, though the banks’ views were considered during the qualitative work carried out prior to the main study. No respondent who is an employee of a banking organization was considered for the final study to avoid the possibility of any bias that could affect the results adversely. The data for the study were collected from customers who have switched banks and from those who were non switchers. The study attempted to develop and validate a multidimensional construct of service quality for retail banking from the consumer’s perspective. A major conclusion from the empirical research was the confirmation of the multidimensional construct for perceived service quality in the banking context. Switching can be viewed as an optimization problem for customers; customers review the potential gains of switching to another service provider against the costs of leaving the service provider. As banks do not provide tangible products, their service quality is usually assessed through service provider’s relationship with customers. Thus, banks should pay attention towards their employees’ skills and knowledge; assessing customers’ needs and offering fast and efficient services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the relation between support vector machines (SVMs) for regression (SVMR) and SVM for classification (SVMC). We show that for a given SVMC solution there exists a SVMR solution which is equivalent for a certain choice of the parameters. In particular our result is that for $epsilon$ sufficiently close to one, the optimal hyperplane and threshold for the SVMC problem with regularization parameter C_c are equal to (1-epsilon)^{- 1} times the optimal hyperplane and threshold for SVMR with regularization parameter C_r = (1-epsilon)C_c. A direct consequence of this result is that SVMC can be seen as a special case of SVMR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support Vector Machines Regression (SVMR) is a regression technique which has been recently introduced by V. Vapnik and his collaborators (Vapnik, 1995; Vapnik, Golowich and Smola, 1996). In SVMR the goodness of fit is measured not by the usual quadratic loss function (the mean square error), but by a different loss function called Vapnik"s $epsilon$- insensitive loss function, which is similar to the "robust" loss functions introduced by Huber (Huber, 1981). The quadratic loss function is well justified under the assumption of Gaussian additive noise. However, the noise model underlying the choice of Vapnik's loss function is less clear. In this paper the use of Vapnik's loss function is shown to be equivalent to a model of additive and Gaussian noise, where the variance and mean of the Gaussian are random variables. The probability distributions for the variance and mean will be stated explicitly. While this work is presented in the framework of SVMR, it can be extended to justify non-quadratic loss functions in any Maximum Likelihood or Maximum A Posteriori approach. It applies not only to Vapnik's loss function, but to a much broader class of loss functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a computation of the $V_gamma$ dimension for regression in bounded subspaces of Reproducing Kernel Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression $epsilon$-insensitive loss function, and general $L_p$ loss functions. Finiteness of the RV_gamma$ dimension is shown, which also proves uniform convergence in probability for regression machines in RKHS subspaces that use the $L_epsilon$ or general $L_p$ loss functions. This paper presenta a novel proof of this result also for the case that a bias is added to the functions in the RKHS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that regression analyses involving compositional data need special attention because the data are not of full rank. For a regression analysis where both the dependent and independent variable are components we propose a transformation of the components emphasizing their role as dependent and independent variables. A simple linear regression can be performed on the transformed components. The regression line can be depicted in a ternary diagram facilitating the interpretation of the analysis in terms of components. An exemple with time-budgets illustrates the method and the graphical features

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on Rijt-Plooij and Plooij’s (1992) research on emergence of regression periods in the first two years of life, the presence of such periods in a group of 18 babies (10 boys and 8 girls, aged between 3 weeks and 14 months) from a Catalonian population was analyzed. The measurements were a questionnaire filled in by the infants’ mothers, a semi-structured weekly tape-recorded interview, and observations in their homes. The procedure and the instruments used in the project follow those proposed by Rijt-Plooij and Plooij. Our results confirm the existence of the regression periods in the first year of children’s life. Inter-coder agreement for trained coders was 78.2% and within-coder agreement was 90.1 %. In the discussion, the possible meaning and relevance of regression periods in order to understand development from a psychobiological and social framework is commented upon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All-optical label swapping (AOLS) forms a key technology towards the implementation of all-optical packet switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the way in which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This paper studies all-optical label stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this paper, an integer lineal program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more