754 resultados para Employees Effect of technological innovations on
Resumo:
Experiments were carried out to determine the properties of the welded joints in 8mm thick high-strength steels produced by quenching and tempering and thermomechanical rolling with accelerated cooling (tensile strength 821–835 MPa). The dependence of the strength, elongation, hardness, impact energy and crack opening displacement on the heat input in the range 1.0–0.7 kJ mm21 was determined. The results show that the dependence of the strength of the welded joints decreases and that of the elongation increases. The heat input has only a slight effect on the impact energy and crack opening displacement in the heat-affected zone.
Resumo:
The objective of this study was to develop laboratory test methods for characterizing the effects of changed moisture content on paperboard trays produced by press-forming process. Influence of moisture on the properties of unconverted paperboard such as bending stiffness, bursting strength, and curling was studied. Paperboard and tray samples were tested after storing in different relative humidity conditions (35, 50, 65, 80 and 95% RH). The effect of PE and PET extrusion coatings on these properties was also studied. It was found that increase in moisture content of paperboard decreases bending and bursting strength, dimensional stability and stiffness of paperboard trays. Such physical and mechanical properties as bending stiffness and curling of paperboard seem to define the stiffness of ready-made trays and their dimensional stability. Paperboards and trays with extruded PE and PET one sided coatings demonstrated higher strength properties but at the same time had lower dimensional stability comparing to uncoated paperboards. Samples with smaller polymer coat weight had better dimensional stability than respective samples with higher coat weight. It was also found that preconditioning of paperboard in lower humidity environment before press-forming could improve dimensional stability and stiffness of ready-made tray.
Resumo:
Osmotic dehydration is considered to be a suitable preprocessing step to reduce the water content of foods. Such products can be dried further by conventional drying processes to lower their water activity and thus extend their shelf life. In this work, banana (Musa sapientum) fruits were initially treated by osmosis by varying several parameters of the processing conditions which included, besides the cutting format (longitudinal and round slices) of the fruit, temperature (28 and 49 ºC), syrup concentration (50, 60 and 67 ºBrix), treatment time (2, 4, 6, 10, 14, 16 and 18 hours), fruit and syrup ratio (1:1, 1:2, 1:3 and 1:4) and agitation effects. The best quality products were obtained by the use of the 67 ºBrix syrup, for 60 minutes of osmotic treatment, at 28 ºC, having a fruit and syrup ratio of 1:1 and agitation. The experimental data obtained on reduction in moisture content during the osmotic treatment were correlated with the experimental equation of M/Mo = Ae(-Kt), where A and K are the constants which represent the geometry and effective diffusivity of the drying process. This simplified mathematical model correlated well with the experimental results.
Resumo:
Enzymatic hydrolysis of granular starch is an important tool to provide information about granule structure. Cassava, sweet potato, Peruvian carrot, and potato starches were hydrolyzed by bacterial α-amylase at 37 °C for 48 hours, and the physicochemical properties of the residues from hydrolysis were determined. Cassava starch was the most susceptible to enzyme displaying 20.9% of hydrolysis, whereas potato starch was the most resistant with 5.9%. The granule average size varied from 10.8 to 23.4 μm for Peruvian carrot and potato starches, respectively. With the use of SEM, a smooth granule surface was observed for all native starches. Cassava and sweet potato starches displayed an A-type X-ray diffraction pattern, while Peruvian carrot and potato starches showed a B-type pattern. After hydrolysis, cassava, sweet potato, and Peruvian carrot starches showed some well degraded granules, whereas potato starch presented a slight sign of degradation. The amylose content of the starches decreased with hydrolysis for cassava, sweet potato, and Peruvian carrot starches and was kept unchanged for the potato starch. As expected, intrinsic viscosity and pasting properties decreased for all hydrolyzed starches. There is no difference between thermal properties of native and hydrolyzed starches. These results suggested that hydrolysis occurred in amorphous and crystalline areas of the granules. The B type diffraction pattern in conjunction with the big granule size of the potato starch may have contributed to the greatest resistance of this starch to hydrolysis.
Resumo:
The sorption behavior of dry products is generally affected by the drying method. The sorption isotherms are useful to determine and compare thermodynamic properties of passion fruit pulp powder processed by different drying methods. The objective of this study is to analyze the effects of different drying methods on the sorption properties of passion fruit pulp powder. Passion fruit pulp powder was dehydrated using different dryers: vacuum, spray dryer, vibro-fluidized, and freeze dryer. The moisture equilibrium data of Passion Fruit Pulp (PFP) powders with 55% of maltodextrin (MD) were determined at 20, 30, 40 and 50 ºC. The behavior of the curves was type III, according to Brunauer's classification, and the GAB model was fitted to the experimental equilibrium data. The equilibrium moisture contents of the samples were little affected by temperature variation. The spray dryer provides a dry product with higher adsorption capacity than that of the other methods. The vibro-fluidized bed drying showed higher adsorption capacity than that of vacuum and freeze drying. The vacuum and freeze drying presented the same adsorption capacity. The isosteric heats of sorption were found to decrease with increasing moisture content. Considering the effect of drying methods, the highest isosteric heat of sorption was observed for powders produced by spray drying, whereas powders obtained by vacuum and freeze drying showed the lowest isosteric heats of sorption.
Resumo:
This study was carried out with one of the most important cultivar grown in the State of Sao Paulo, Brazil, which has gained the preference of consumers, due to its sweet taste, intense skin color and large size; however, these fruits are susceptible to chilling injury when cold stored for long periods. The use of controlled atmosphere (CA) with elevated CO2 and reduced O2 concentrations prevent the onset of the chilling symptom. Thus, the effect of three different conditions of controlled atmosphere (CA1, CA2, CA3 and Control) was evaluated in order to extend the storage life of 'Douradão' peaches. After 14, 21 and 28 days, samples were withdrawn from CA and kept in fresh air at 25 ± 1 °C and 90 ± 5% RH to complete ripening. On the day of removal and after 4 days, were the peaches quality characteristics were evaluated. The results showed that the use of CA during cold storage reduced weight loss and prevented postharvest decay. CA2 and CA3 treatments were effective in keeping good quality of 'Douradão' peaches during 28 days of cold storage, the ripe fruits showed reduced incidence of woolliness, adequate juiciness and flesh firmness. CA1 and Control treatments did not present marketable conditions after 14 days of cold storage.
Resumo:
Cajá-manga, also known as golden apple and hog-plum, is an exotic fruit native from Îles de la Société (French Polynesia), which was first introduced in Brazil in 1985. The pulp of ripe fruit was treated with the commercial enzymatic pool and its effect was evaluated in terms of yield, as well as the physical properties viscosity, turbidity and color (L* values). Response surface methodology was used and three levels were adopted for the independent variables temperature (30, 40, and 50 ºC), incubation time (30, 60 and 90 minutes) and enzyme concentration (0.01, 0.05, 0.09 v/v%). A central composite statistical design was used to guide the experimental work. The enzyme treatment highly increased both juice yield (up to 56%) and color (up to 8.6%) and strongly decreased viscosity (up to 57.4%), clarity (up to 77%) and turbidity (up to 85.5%). Incubation time was the most interacting facto, whereas temperature was the least one. Optimization analysis was carried out to reduce enzyme concentration to a minimum by superposing the contour plots of the tested properties, and the recommended ranges of the variables enzyme concentration, process temperature and incubation time were, respectively, 0.042-0.068%, 47.0-49.0 ºC and 82-90 minutes.
Resumo:
Based on the concept that the trellising system affects not only sunlight interception and carbon assimilation, but also the fruitzone microclimate, which has a great impact on fruit composition and consequently on wine quality, the effect of two trellising systems - Vertical Shoot Position (VSP) and modified Geneva Double Curtain (GDC) - on wine and berry composition of Syrah grapes grown in João Pinheiro, Northeast region of Minas Gerais State, Brazil was investigated. The parameters such as pH, berry size and weight, and seeds total phenolic contents were not affected by the training system. The GDC system produced fruits with the highest Brix and lowest titratable acidity. Berries from the VSP system presented lower anthocyanin concentration than those from the GDC system. Similar results were found for the total phenolic content of the skin of grape berries from the VSP system. GDC wines were characterized by high anthocyanin content and red color, resulting in wines with high color intensity. These data suggest that in the tropical region of Minas Gerais state, with high temperature and high sunlight intensity, the trellising system, which protects bunches against excessive radiation, should be chosen.
Resumo:
The purpose of this study was to evaluate changes in the structure and some functional properties of biofilms added with modified clays (Cloisite® 15A and Cloisite® 30B) prepared by the casting method. The analysis of the microstructure of the films, scanning electron microscopy (SEM), Optical microscopy (MO), and Infrared Spectroscopy (FTIR) indicated that the addition of clay in the films resulted in the formation of a heterogeneous microstructure, microcomposite or tactoid. Due to the formation of a microcomposite structure, functional properties of the films added with both clays such as opacity, solubility, and permeability to water vapor (PVA), were not better than those of the control film. Thus, it was concluded that although it is possible to produce a film added with modified clays using the casting method, it was not possible to obtain intercalation or exfoliation in a nanocomposite, which would result in improved functional properties.
Resumo:
The objective of this work was to study the effect of blanching and the influence of temperature, solution concentration, and the initial fruit:solution ratio on the osmotic dehydration of star-fruit slices. For blanching, different concentrations of citric and ascorbic acids were studied. The samples immersed in 0.75% citric acid presented little variation in color in relation to the fresh star-fruit. Osmotic dehydration was carried out in an incubator with orbital shaking, controlled temperature, and constant shaking at 120 rpm. The influence of process variables was studied in trials defined by a complete 23 central composite design. In general, water loss and solids gain were positively influenced by temperature and by solution concentration. Nevertheless, lower temperatures reduced water loss throughout the osmotic dehydration process. An increase in the amount of dehydrating solution (initial fruit:solution ratio) slightly influenced the evaluated responses. The process carried out at 50 ºC with a solution concentration of 50% resulted in a product with lower solids gain and greater water loss. Under these conditions, blanching minimized the effect of the osmotic treatment on star-fruit browning, and therefore the blanched fruits showed little variation in color in relation to the fresh fruit.
Resumo:
Oats have received attention because of their nutritional characteristics, especially their high-quality content of β-glucan. The drying process reduces water content; therefore they can be preserved for long periods. However, high-temperature drying process may affect the physical, chemical, and functional properties of the grains. The objective of this study was to evaluate the effect of different drying temperatures on β-glucan quality in oat grains. Grains of oats (Avena sativa, L.), cultivar Albasul, harvested at harvest moisture content of 23% were submitted to stationary drying at air temperatures of 25, 50, 75, and 100 ºC until they reached 13% moisture content. The β-glucan content was determined in samples of oat grains and extraction was performed using water as solvent at 90 ºC. The β-glucan extract was evaluated for water holding capacity, water retention capacity, capacity of displacement, and gelation properties. Stationary of oat grains at air temperatures above 25 ºC decreased the water holding capacity, whereas the content of β-glucan and the water retention capacity of β-glucan extract was affected at temperatures above 50 ºC. Physical changes such as increased gelation capacity of the β-glucan extract occurred following drying at air temperature over 75 ºC.
Resumo:
Cassava starch factories produce residues that can be commercialized as food ingredients. The objective of this study was to evaluate the microbiological safety of cassava peel and bagasse during storage, with and without chemical treatment. The bagasse was acidified with lactic acid, and the peel was immersed in a sodium hypochlorite solution. The microbiological analyses were carried out for 72 h after harvest. All of the samples showed the absence of pathogenic microorganisms, and the acidification and sanitization were effective in controlling total coliforms. Cassava bagasse and peel samples can be considered safe for consumption by humans as ingredients for other food products.
Resumo:
Ordered probit regression was used to analyze data of sensory acceptance tests designed to study the effect of brand name on the acceptability of beer samples. Eight different brands of Pilsen beer were evaluated by 101 consumers in two sessions of acceptance tests: blind evaluation and brand information test. Ordered probit regression, although a relatively sophisticated technique compared to others used to analyze sensory data, was chosen to enable the observation of consumers' behavior using graphical interpretations of estimated probabilities plotted against hedonic scales. It can be concluded that brands B, C, and D had a positive effect on the sensory acceptance of the product, whereas brands A, F, G, and H had a negative influence on consumers' evaluation of the samples. On the other hand, brand E had little influence on consumers' assessment.
Resumo:
The objective of this study was to determine the optimal temperature for storing gabiroba fruit (Campomanesia pubescens) without affecting compounds' quality. The fruits were stored at different temperatures (0 ºC, 6 ºC, 12 ºC, and 20 ºC) and the effect on the pH, total titratable acidity, soluble solids, total sugars, vitamin C, and antioxidant components such as tannins and total phenolic compounds was evaluated. It was observed an increase in the pH and total titratable acidity during storage at all the temperatures tested. Gabiroba fruits were stored for 9 and 3 days at 12 ºC and 20 ºC, respectively, and under both temperatures they showed a reduction in tannins and an increase in vitamin C content. As gabirobas armazenadas a 0º and 6 ºC alcançaram maior tempo de armazenamento After 12 days of storage, the fruits stored at 6 ºC contained higher amounts of water soluble solids, sugars, and antioxidants. In general, for long term storage, it is suggested to store gabiroba fruits at 6 ºC. On the other hand, for short term storage, the temperature of 12 ºC would be the better to keep high levels of vitamin C and phenolic compounds.