873 resultados para Eletric power transmission
Resumo:
Analysis and synthesis of the new Class-EF power amplifier (PA) are presented in this paper. The proposed circuit offers means to alleviate some of the major issues faced by existing Class-EF and Class-EF PAs, such as (1) substantial power losses due to parasitic resistance of the large inductor in the Class-EF load network, (2) unpredictable behaviour of practical lumped inductors and capacitors at harmonic frequencies, and (3) deviation from ideal Class-EF operation mode due to detrimental effects of device output inductance at high frequencies. The transmission-line load network of the Class-EF PA topology elaborated in this paper simultaneously satisfies the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Furthermore, an elegant solution using an open and short-circuit stub arrangement is suggested to overcome the problem encountered in the mm-wave IC realizations of the Class-EF PA load network due to lossy quarter-wave line. © 2010 IEICE Institute of Electronics Informati.
Resumo:
In this paper we extend the derivation of the modified form Snells's law that occurs when an additional phase profile is introduced at the material interface. We show that this permits electromagnetic (EM) beam steering, negative refraction and retrodirective action opportunities for such engineered surfaces even if they are immersed in a uniform dielectric. Simple expressions for the retrodirected and negatively refracted beams are derived along with the propagation conditions that occur at the boundary interface inside the critical angle range. It is also demonstrated how the transmission and reflected power levels are affected by the additional phase taper introduced at the surface.
Resumo:
This paper presents transient stability analysis for a power system with high wind penetration. The transient stability has been evaluated based on two stability criteria: rotor angle stability and voltage stability. A modified IEEE-14 bus system has been used as the main study network and simulations have been conducted at several wind power penetration levels, defined as a fraction of total system generation. A wide range of scenarios have been presented based on the wind farm voltage at the point of connection, i.e. low voltage (LV) distribution level and high voltage (HV) transmission level, and the type of wind generator technology, i.e. fixed speed induction generator (FSIG) and doubly-fed induction generator (DFIG).
Resumo:
This paper presents the design and implementation of a low-voltage-stress Class-EF power amplifier (PA) with extended maximum operating frequency, named as ‘third-harmonic-peaking Class-EF PA’. A novel transmission-line load network is proposed to meet the Class-EF impedance requirements at the fundamental, all even harmonics, and third harmonic components. It also provides an impedance matching to a 50 Ω load. A more effective λ/8 open- and shorted-stub network is deployed at the drain of the transistor replacing the traditional λ/4 transmission line. Implemented using GaN HEMTs, the PA delivered 39.2 dBm output power with 80.5% drain efficiency and 71% PAE at 2.22 GHz.
Resumo:
This paper exploits an amplify-and-forward (AF) two-way relaying network (TWRN), where an energy constrained relay node harvests energy with wireless power transfer. Two bidirectional protocols, multiple access broadcast (MABC) protocol and time division broadcast (TDBC) protocol, are considered. Three wireless power transfer policies, namely, 1) dual-source (DS) power transfer; 2) single-fixed-source (SFS) power transfer; and 3) single-best-source (SBS) power transfer are proposed and well-designed based on time switching receiver architecture. We derive analytical expressions to determine the throughput both for delay-limited transmission and delay-tolerant transmission. Numerical results corroborate our analysis and show that MABC protocol achieves a higher throughput than TDBC protocol. An important observation is that SBS policy offers a good tradeoff between throughput and power.
Resumo:
This study presents a new method for determining the transmission network usage by loads and generators, which can then be used for transmission cost/loss allocation in an explainable and justifiable manner. The proposed method is based on solid physical grounds and circuit theory. It relies on dividing the currents through the network into two components; the first one is attributed to power flows from generators to loads, whereas the second one is because of the generators only. Unlike almost all the available methods, the proposed method is assumption free and hence it is more accurate than similar methods even those having some physical basis. The proposed method is validated through a transformer analogy, and theoretical derivations. The method is verified through application to the IEEE 30 bus system and the IEEE 118 test system. The results obtained verified many desirable features of the proposed method. Being more accurate in determining the network usage, in an explainable transparent manner, and in giving accurate cost signals, indicating the best locations to add loads and generation, are among the many desirable features.
Resumo:
A new variant of Class-EF power amplifier (PA), the so-called third-harmonic-peaking Class-EF, is presented. It inherits a soft-switching operation from the Class-E PA and a low peak switch voltage from the Class-F PA. More importantly, the new topology allows operations at higher frequencies and permits deployment of large transistors which is normally prohibited since they are always accompanied with high output capacitances. Using a simple transmission-line load network, the PA is synthesized to satisfy Class-EF impedances at fundamental frequency, third harmonic, and all even harmonics as well as to simultaneously provide an impedance matching to 50-Ω load.
Resumo:
A new method is presented for transmission loss allocation based on the separation of transmission loss caused by load and the loss due to circulating currents between generators. The theoretical basis for and derivation of the loss formulae are presented using simple systems. The concept is then extended to a general power system using the Ybus model. Details of the application of the proposed method to a typical power system are presented along with results from the IEEE 30 bus test system. The results from both the small system and the standard IEEE test system demonstrate the validity of the proposed method.
High-Efficiency Harmonic-Peaking Class-EF Power Amplifiers with Enhanced Maximum Operating Frequency
Resumo:
The recently introduced Class-EF power amplifier (PA) has a peak switch voltage lower than that of the Class-E PA. However, the value of the transistor output capacitance at high frequencies is typically larger than the required Class-EF optimum shunt capacitance. Consequently, soft-switching operation that minimizes power dissipation during off-to-on transition cannot be achieved at high frequencies. Two new Class-EF PA variants with transmission-line load networks, namely, third-harmonic-peaking (THP) and fifth-harmonic-peaking (FHP) Class-EF PAs are proposed in this paper. These permit operation at higher frequencies at no expense to other PA figures of merit. Analytical expressions are derived in order to obtain circuit component values, which satisfy the required Class-EF impedances at fundamental frequency, all even harmonics, and the first few odd harmonics as well as simultaneously providing impedance matching to a 50- Ω load. Furthermore, a novel open-circuit and shorted stub arrangement, which has substantial practical benefits, is proposed to replace the normal quarter-wave line connected at the transistor's drain. Using GaN HEMTs, two PA prototypes were built. Measured peak drain efficiency of 91% and output power of 39.5 dBm were obtained at 2.22 GHz for the THP Class-EF PA. The FHP Class-EF PA delivered output power of 41.9 dBm with 85% drain efficiency at 1.52 GHz.
Resumo:
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multi-antenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the cellular base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power transfer model, we propose a new power transfer policy, namely, best power beacon (BPB) power transfer. To characterize the power transfer reliability of the proposed policy, we derive new closed-form expressions for the exact power outage probability and the asymptotic power outage probability with large antenna arrays at PBs. In the information signal model, we present a new comparative framework with two receiver selection schemes: 1) best receiver selection (BRS), and 2) nearest receiver selection (NRS). To assess the secrecy performance, we derive new expressions for the secrecy throughput considering the two receiver selection schemes using the BPB power transfer policies. We show that secrecy performance improves with increasing densities of PBs and D2D receivers because of a larger multiuser diversity gain. A pivotal conclusion is reached that BRS achieves better secrecy performance than NRS but demands more instantaneous feedback and overhead.
Resumo:
Gas fired generation currently plays an integral support role ensuring security of supply in power systems with high wind power penetrations due to its technical and economic attributes. However, the increase in variable wind power has affected the gas generation output profile and is pushing the boundaries of the design and operating envelope of gas infrastructure. This paper investigates the mutual dependence and interaction between electricity generation and gas systems through the first comprehensive joined-up, multi-vector energy system analysis for Ireland. Key findings reveal the high vulnerability of the Irish power system to outages on the Irish gas system. It has been shown that the economic operation of the power system can be severely impacted by gas infrastructure outages, resulting in an average system marginal price of up to €167/MWh from €67/MWh in the base case. It has also been shown that gas infrastructure outages pose problems for the location of power system reserve provision, with a 150% increase in provision across a power system transmission bottleneck. Wind forecast error was shown to be a significant cause for concern, resulting in large swings in gas demand requiring key gas infrastructure to operate at close to 100% capacity. These findings are thought to increase in prominence as the installation of wind capacity increases towards 2020, placing further stress on both power and gas systems to maintain security of supply.
Resumo:
The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.
Resumo:
Currently wind power is dominated by onshore wind farms. However, as the demand for power grows driven by security of energy supply issues, dwindling fossil fuel supplies and greenhouse gas emissions reduction targets, offshore wind power will develop rapidly because of the decline of viable onshore sites. The United Kingdom has a target of 21% renewable electricity by 2020 and this is expected to come mostly from wind power. Britain is the most active internationally in terms of offshore wind farm development with almost 48GW in some stage of development. In addition the Scottish Government, the Northern Ireland Executive and the Government of Ireland undertook the 'Irish-Scottish Links on Energy Study' (ISLES), which examined the feasibility of creating an offshore interconnected transmission network and subsea electricity grid based on renewable energy sources off the coast of western Scotland and the Irish Sea. The aim of this paper is to provide an appraisal of offshore wind power development with a focus on the United Kingdom. © 2013 IEEE.
Resumo:
The power system of the future will have a hierarchical structure created by layers of system control from via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the concept of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called ‘back-up generation’ needed to support an 80% renewable energy portfolio in Europe by 2050.
Resumo:
In this paper, we propose general-order transmit antenna selection to enhance the secrecy performance of multiple-input–multiple-output multieavesdropper channels with outdated channel state information (CSI) at the transmitter. To evaluate the effect of the outdated CSI on the secure transmission of the system, we investigate the secrecy performance for two practical scenarios, i.e., Scenarios I and II, where the eavesdropper's CSI is not available at the transmitter and is available at the transmitter, respectively. For Scenario I, we derive exact and asymptotic closed-form expressions for the secrecy outage probability in Nakagami- m fading channels. In addition, we also derive the probability of nonzero secrecy capacity and the \varepsilon -outage secrecy capacity, respectively. Simple asymptotic expressions for the secrecy outage probability reveal that the secrecy diversity order is reduced when the CSI is outdated at the transmitter, and it is independent of the number of antennas at each eavesdropper N_text\rm{E} , the fading parameter of the eavesdropper's channel m_text\rm{E} , and the number of eavesdroppers M . For Scenario II, we make a comprehensive analysis of the average secrecy capacity obtained by the system. Specifically, new closed-form expressions for the exact and asymptotic average secrecy capacity are derived, which are valid for general systems with an arbitrary number of antennas, number of eavesdroppers, and fading severity parameters. Resorting to these results, we also determine a high signal-to-noise ratio power offset to explicitly quantify the impact of the main c- annel and the eavesdropper's channel on the average secrecy capacity.