926 resultados para Elementary Methods In Number Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides a descriptive summary of tools to measure dietary intake and dietary behaviours - exploring the application, reliability and validity of the various tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This analysis paper presents previously unknown properties of some special cases of the Wright function whose consideration is necessitated by our work on probability theory and the theory of stochastic processes. Specifically, we establish new asymptotic properties of the particular Wright function 1Ψ1(ρ, k; ρ, 0; x) = X∞ n=0 Γ(k + ρn) Γ(ρn) x n n! (|x| < ∞) when the parameter ρ ∈ (−1, 0)∪(0, ∞) and the argument x is real. In the probability theory applications, which are focused on studies of the Poisson-Tweedie mixtures, the parameter k is a non-negative integer. Several representations involving well-known special functions are given for certain particular values of ρ. The asymptotics of 1Ψ1(ρ, k; ρ, 0; x) are obtained under numerous assumptions on the behavior of the arguments k and x when the parameter ρ is both positive and negative. We also provide some integral representations and structural properties involving the ‘reduced’ Wright function 0Ψ1(−−; ρ, 0; x) with ρ ∈ (−1, 0) ∪ (0, ∞), which might be useful for the derivation of new properties of members of the power-variance family of distributions. Some of these imply a reflection principle that connects the functions 0Ψ1(−−;±ρ, 0; ·) and certain Bessel functions. Several asymptotic relationships for both particular cases of this function are also given. A few of these follow under additional constraints from probability theory results which, although previously available, were unknown to analysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper describes the strategies for Congestion and Incident Management (CIM) on the basis of Automatic Congestion and Incident Detection (ACID) that COSMOS will develop, implement in SCOOT, UTOPIA and MOTION, and validate and demonstrate in London, Piraeus and Torino. Four levels of operation were defined for CIM: strategies, tactics, tools and realisation. The strategies for CIM form the top level of this hierarchy. They have to reflect the strategic requirements of the system operators. The tactics are the means that can be employed by the strategies to achieve particular goals in particular situations. The tools that are used by the tactics relate to the elements of the signal plan and the ways in which they can be modified. Strategies, tactics and tools are generally common to all three systems, while the realisation of individual strategies and tactical decisions, through the use of particular common sets of tools, will generally be system specific. For the covering abstract, see IRRD 490001.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Part 1 of this thesis, we propose that biochemical cooperativity is a fundamentally non-ideal process. We show quantal effects underlying biochemical cooperativity and highlight apparent ergodic breaking at small volumes. The apparent ergodic breaking manifests itself in a divergence of deterministic and stochastic models. We further predict that this divergence of deterministic and stochastic results is a failure of the deterministic methods rather than an issue of stochastic simulations.

Ergodic breaking at small volumes may allow these molecular complexes to function as switches to a greater degree than has previously been shown. We propose that this ergodic breaking is a phenomenon that the synapse might exploit to differentiate Ca$^{2+}$ signaling that would lead to either the strengthening or weakening of a synapse. Techniques such as lattice-based statistics and rule-based modeling are tools that allow us to directly confront this non-ideality. A natural next step to understanding the chemical physics that underlies these processes is to consider \textit{in silico} specifically atomistic simulation methods that might augment our modeling efforts.

In the second part of this thesis, we use evolutionary algorithms to optimize \textit{in silico} methods that might be used to describe biochemical processes at the subcellular and molecular levels. While we have applied evolutionary algorithms to several methods, this thesis will focus on the optimization of charge equilibration methods. Accurate charges are essential to understanding the electrostatic interactions that are involved in ligand binding, as frequently discussed in the first part of this thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Ph.D. project, original and innovative approaches for the quali-quantitative analysis of abuse substances, as well as therapeutic agents with abuse potential and related compounds were designed, developed and validated for application to different fields such as forensics, clinical and pharmaceutical. All the parameters involved in the developed analytical workflows were properly and accurately optimised, from sample collection to sample pretreatment up to the instrumental analysis. Advanced dried blood microsampling technologies have been developed, able of bringing several advantages to the method as a whole, such as significant reduction of solvent use, feasible storage and transportation conditions and enhancement of analyte stability. At the same time, the use of capillary blood allows to increase subject compliance and overall method applicability by exploiting such innovative technologies. Both biological and non-biological samples involved in this project were subjected to optimised pretreatment techniques developed ad-hoc for each target analyte, making also use of advanced microextraction techniques. Finally, original and advanced instrumental analytical methods have been developed based on high and ultra-high performance liquid chromatography (HPLC,UHPLC) coupled to different detection means (mainly mass spectrometry, but also electrochemical, and spectrophotometric detection for screening purpose), and on attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for solid-state analysis. Each method has been designed to obtain highly selective, sensitive yet sustainable systems and has been validated according to international guidelines. All the methods developed herein proved to be suitable for the analysis of the compounds under investigation and may be useful tools in medicinal chemistry, pharmaceutical analysis, within clinical studies and forensic investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi propone una panoramica sul funzionamento interno delle architetture alla base del deep learning e in particolare del geometric deep learning. Iniziando a discutere dalla storia degli algoritmi di intelligenza artificiale, vengono introdotti i principali costituenti di questi. In seguito vengono approfonditi alcuni elementi della teoria dei grafi, in particolare il concetto di laplaciano discreto e il suo ruolo nello studio del fenomeno di diffusione sui grafi. Infine vengono presentati alcuni algoritmi utilizzati nell'ambito del geometric deep learning su grafi per la classificazione di nodi. I concetti discussi vengono poi applicati nella realizzazione di un'architettura in grado di classficiare i nodi del dataset Zachary Karate Club.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let C be a smooth, absolutely irreducible genus 3 curve over a number field M. Suppose that the Jacobian of C has complex multiplication by a sextic CM-field K. Suppose further that K contains no imaginary quadratic subfield. We give a bound on the primes p of M such that the stable reduction of C at p contains three irreducible components of genus 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamental question "Are sequential data random?" arises in myriad contexts, often with severe data length constraints. Furthermore, there is frequently a critical need to delineate nonrandom sequences in terms of closeness to randomness--e.g., to evaluate the efficacy of therapy in medicine. We address both these issues from a computable framework via a quantification of regularity. ApEn (approximate entropy), defining maximal randomness for sequences of arbitrary length, indicating the applicability to sequences as short as N = 5 points. An infinite sequence formulation of randomness is introduced that retains the operational (and computable) features of the finite case. In the infinite sequence setting, we indicate how the "foundational" definition of independence in probability theory, and the definition of normality in number theory, reduce to limit theorems without rates of convergence, from which we utilize ApEn to address rates of convergence (of a deficit from maximal randomness), refining the aforementioned concepts in a computationally essential manner. Representative applications among many are indicated to assess (i) random number generation output; (ii) well-shuffled arrangements; and (iii) (the quality of) bootstrap replicates.