972 resultados para Electron density


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the contrast formation in the local contact potential difference (LCPD) measured by Kelvin probe force microscopy (KPFM) on single charge-transfer complexes (CTCs) on a NaCl bilayer on Cu(111). At different tip heights, we found quantitatively different LCPD contrasts that characterize different properties of the molecule. In the small distance regime, the tip penetrates the electron density of the molecule, and the contrast is related to the size and topography of the electron shell of the molecule. For larger distances, the LCPD contrast corresponds to the electrostatic field above the molecule. However, in the medium-distance regime, that is, for tip heights similar to the size of the molecule, the nonspherical distribution of π- and σ-electrons often conceals the effect of the partial charges within the molecule. Only for large distances does the LCPD map converge toward the simple field of a dipole for a polar molecule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole−dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent−solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and stabilization of CT states in an important group of molecules such as transition metal complexes is inaccurate. In particular, we proved that the solvent molecules are not just spectators of intramolecular electron density redistribution but significantly modulate it. Our results solicit further development of quantum mechanics computational methods to treat the solute and (at least) the closest solvent molecules including the nonperturbative treatment of the effects of local electrostatics and direct solvent−solute interactions to describe the dynamical changes of the solute excited states during the solvent response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The determination of the Stark broadening parameters of Sn ions is useful for astrophysicists interested in the determination of the density of electrons in stellar atmospheres. In this paper, we report on the calculated values of the Stark broadening parameters for 171 lines of Sn iii arising from 4d105sns (n= 6–9), 4d105snp (n= 5, 6), 4d105p2, 4d105snd (n= 5–7), 4d105s4f and 4d105s5g. Stark linewidths and line shifts are presented for an electron density of 1023 m−3 and temperatures T= 11 000–75 000 K. These have been calculated using a semi-empirical approach, with a set of wavefunctions obtained from Hartree–Fock relativistic calculations, including core polarization effects. The results obtained have been compared with available experimental data. These can be used to consider the influence of Stark broadening effects in A-type stellar atmospheres

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Infrared (IR) interferometry is a method for measuring the line-electron density of fusion plasmas. The significant performance achieved by FPGAs in solving digital signal processing tasks advocates the use of this type of technology in two-color IR interferometers of modern stellarators, such as the TJ-II (Madrid, Spain) and the future W7-X (Greifswald, Germany). In this work the implementation of a line-average electron density measuring system in an FPGA device is described. Several optimizations for multichannel systems are detailed and test results from the TJ-II as well as from a W7-X prototype are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report calculated values of the Stark widths and shifts for 72 spectral lines of Pb v. They were calculated using the Griem semi-empirical approach. A set of wavefunctions obtained from Hartree–Fock relativistic calculations including core polarization effects was used. Stark widths and shifts corresponding to lines arising from 5d9ns (n = 7, 8), 5d9 6p, 5d9 6d and 5d9 5f configurations of Pb v. Stark widths and shifts are presented for an electron density of 1017 cm−3 and temperatures T = 1.6–5.0 (104 K). The 2142.5, 2167.9 and 2278.6 Å lines of Pb v recently measured are included in our calculations. In this case, we have included for comparison calculations without core polarization effects. There is good agreement between our calculations and the above-cited experimental values.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las plantas son organismos sésiles que han desarrollado la capacidad para detectar variaciones sutiles en su ambiente y producir respuestas adaptativas mediante rutas de señalización. Los estímulos causados por el estrés biótico y abiótico son numerosos y dependiendo del tiempo de exposición y su intensidad, pueden reducir la tasa de crecimiento de las plantas y la producción. Los cambios en la concentración del calcio citosólico libre constituyen una de las primeras reacciones intracelulares a las situaciones de estrés abiótico. En esta situación, el calcio actúa como segundo mensajero y las variaciones en su concentración son descodificadas por proteínas de unión a calcio. Las más conocidas son las manos-EF y los dominios C2. Los dominios C2 han sido descritos como dominios de unión a lípidos dependientes de calcio. Estos dominios se consideran proteínas periféricas solubles en agua que se asocian de manera reversible a los lípidos de la membrana mediante una o dos regiones funcionales: el sitio de unión a calcio y el sitio polibásico. A pesar de que se conoce la estructura molecular de algunos dominios C2, se desconocen aspectos relacionados como las reglas que dirigen su forma de interaccionar con los diferentes fosfolípidos y proteínas, la posición que ocupan en la bicapa lipídica y su papel en la transmisión de señales. En esta tesis se ha estudiado una proteína de Arabidopsis thaliana (At3g17980) representativa de una nueva familia de proteínas con dominios C2, que consiste únicamente de un dominio C2. Esta proteína, llamada AtC2.1, ha sido clonada en el vector pETM11, expresada en E. coli y purificada a homogeneidad en dos pasos cromatográficos. Se obtuvieron cristales de AtC2.1 de buena calidad mediante técnicas de difusión de vapor. La proteína fue co-cristalizada con calcio, fosfocolina (POC) y el fosfolípido 1,2-dihexanoil-sn-glicero-3-fosfo-L-serina (PSF). Se recogieron ocho conjuntos de datos de difracción de rayos X empleando radiación sincrotrón. Los cristales difractaron hasta 1.6 Å de resolución. Siete de ellos pertenecían al grupo ortorrómbico P212121, con las dimensiones de la celdilla unidad a = 35.3, b = 88.9, c = 110.6 Å, y un cristal pertenecía al grupo espacial monoclínico C2, con a = 124.84, b = 35.27, c = 92.32 Å y = 121.70º. La estructura se resolvió mediante la técnica MR-SAD utilizando el cinc como dispersor anómalo. La estructura cristalina mostró que la molécula forma un dímero en el que cada protómero se pliega como un dominio C2 típico, con la topología tipo II y presenta una inserción de 43 aminoácidos que la diferencia de los dominios C2 conocidos. El mapa de densidad electrónica mostró dos átomos de calcio por protómero. Se resolvieron las estructuras de AtC2.1 en complejo con POC o PSF. En ambos complejos, el análisis cristalográfico detectó máximos de densidad electrónica en la región correspondiente al sitio polibásico formado por las hebras 2, 3 5 y el lazo 3. Éstos se interpretaron correctamente como dos moléculas de POC y un átomo de cinc, en un complejo, y como la cabeza polar del PSF en el otro. AtC2.1 define un sitio de interacción con lípidos dependiente de cinc. En conclusión, en este trabajo se presenta la estructura tridimensional de AtC2.1, miembro representativo de una familia de proteínas de Arabidopsis thaliana, identificadas como proteínas que interaccionan con los receptores de ABA. Estas proteínas están constituidas únicamente por un dominio C2. El análisis conjunto de los datos biofísicos y cristalográficos muestra que AtC2.1 es un sensor de calcio que une lípidos usando dos sitios funcionales. Estos datos sugieren un mecanismo de inserción en membrana dependiente de calcio que trae consigo la disociación de la estructura dimérica y, por consiguiente, un cambio en las propiedades de superficie de la molécula. Este mecanismo proporciona las bases del reconocimiento y transporte de los receptores de ABA y/o otras moléculas a la membrana celular. Plants are sessile organisms that have developed the capacity to detect slight variations of their environment. They are able to perceive biotic and abiotic stress signals and to transduce them by signaling pathways in order to trigger adaptative responses. Stress factors are numerous and, depending on their exposition time and their concentration, can reduce plant growth rate, limiting the productivity of crop plants. Changes in the cytosolic free calcium concentration are observed as one of the earliest intracellular reactions to abiotic stress signals. Calcium plays a key role as a second messenger, and calcium concentration signatures, called calcium signals, are decodified by calcium binding proteins. The main calcium binding structures are the EF-hand motif and the C2 domains. C2 domain is a calcium dependent lipid-binding domain of approximately 130 amino acids. C2 domain displays two functional regions: the Ca-binding region and the polybasic cluster. Both of them can interact with the membrane phospholipids. Despite the number of C2 domain 3D structures currently available, questions about how they interact with the different target phospholipids, their precise spatial position in the lipid bilayer, interactions with other proteins and their role in transmitting signals downstream, have not yet been explored. In this work we have studied an uncharacterized protein from Arabidopsis thaliana (At3g17980) consisting of only a single C2 domain, as member of a new protein C2-domain family. This protein called AtC2.1 was cloned into the pETM11 vector and expressed in E. coli, allowing the purification to homogeneity in two chromatographic steps. Good quality diffracting crystals were obtained using vapor-diffusion techniques. Crystals were co-crystalized with calcium; phosphocholine (POC) and/or the phospholipid 1,2-dihexanoyl-sn-glycero-3-phospho-L-serine (PSF). Eight data set were collected with synchrotron radiation. Crystals diffracted up to 1.6 Å resolution and seven of them belong to the orthorhombic space group P212121, with unit-cell parameters a = 35.3, b = 88.9, c = 110.6 Å. Another crystal was monoclinic, space group C2, with a = 124.84, b = 35.27, c = 92.32 Å and = 121.70º. The structural model was solved by MR-SAD using Zn2+ as anomalous scatterer. The crystal structure shows that the molecule is a dimer. Each monomer was folded as a canonical C2 domain with the topology II with a 43 residues insertion. The electron density map reveals two calcium ions per molecule. Structures of AtC2.1, complexed with POC and PSF, have been solved. Well-defined extra electron densities were found, in both complexes, within the concave surface formed by strands 2, 3, 5 and loop 3 of AtC2.1. These densities were clearly explained by the presence of the two POC molecules, one zinc atom and head groups of PSF, occupying the cavity of the polybasic site. AtC2.1 defines a new metal dependent lipid-binding site into the polybasic site. In conclusion, in this thesis it is presented the molecular structure of AtC2.1, a representative member of a family of Arabidopsis thaliana C2 domain proteins, of unknown function, but identified as a molecular interacting unit of the ABA receptors. The joint analyses of the biophysical and crystallographic data show that AtC2.1 is a calcium sensor that binds lipids in two sites and suggest a model of calcium-dependent membrane insertion mechanism that will involve either dimer dissociation or a strong rearrangement of the dimeric structure. This mechanism may be the basis for the recognition and delivery of ABA receptors or other protein molecules to cell membranes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current I to a cylindrical Langmuir probe with a bias Φp satisfying β≡eΦp/mec2∼O(1) is discussed. The probe is considered at rest in an unmagnetized plasma composed of electrons and ions with temperatureskTe∼kTi≪mec2. For small enough radius, the probe collects the relativistic orbital-motion-limited (OML) current I OML , which is shown to be larger than the non-relativistic result; the OML current is proportional to β1/2 and β3/2 in the limits β≪1 and β≫1, respectively. Unlike the non-relativistic case, the electron density can exceed the unperturbed density value. An asymptotic theory allowed to compute the maximum radius of the probe to collect OML current, the sheath radius for probe radius well below maximum and how the ratio I/I OML drops below unity when the maximum radius is exceeded. A numerical algorithm that solves the Vlasov-Poisson system was implemented and density and potential profiles presented. The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers are discussed density value. An asymptotic theory allowed to compute the maximum radius of the probe to collect OML current, the sheath radius for probe radius well below maximum and how the ratio I/IOML drops below unity when the maximum radius is exceeded. A numerical algorithm that solves the Vlasov-Poisson system was implemented and density and potential profiles presented. The results and their implications in a possible mission to Jupiter with electrodynamic bare tethers are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pH response of GaN/AlInN/AlN/GaN ion-sensitive field effect transistor (ISFET) on Si substrates has been characterized. We analyzed the variation of the surface potential (ΔVsp/ΔpH) and current (ΔIds/ΔpH) with solution pH in devices with the same indium content (17%, in-plane lattice-matched to GaN) and different AlInN thickness (6 nm and 10 nm), and compared with the literature. The shrinkage of the barrier, that has the effect to increase the transconductance of the device, makes the 2-dimensional electron density (2DEG) at the interface very sensitive to changes in the surface. Although the surface potential sensitivity to pH is similar in the two devices, the current change with pH (ΔIds/ΔpH), when biasing the ISFET by a Ag/AgCl reference electrode, is almost 50% higher in the device with 6 nm AlInN barrier, compared to the device with 10 nm barrier. When measuring the current response (ΔIds/ΔpH) without reference electrode, the device with thinner AlInN layer has a larger response than the thicker one, of a factor of 140%, and that current response without reference electrode is only 22% lower than its maximum response obtained using reference electrode.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have determined matrix elements for all experimental configurations of Ca III, including the 3s3p63d configuration. These values have been obtained using intermediate coupling (IC). For these IC calculations, we have used the standard method of least-squares fitting from the experimental energy levels, using the computer code developed by Robert Cowan. In this paper, using these matrix elements, we report the calculated values of the Ca III Stark widths and shifts for 148 spectral lines, of 56 Ca III spectral line transition probabilities and of eight radiative lifetimes of Ca III levels. The Stark widths and shifts, calculated using the Griem semi-empirical approach, correspond to the spectral lines of Ca III and are presented for an electron density of 1017 cm?3 and temperatures T = 1.0?10.0 (×104 K). The theoretical trends of the Stark broadening parameter versus the temperature are presented for transitions that are of astrophysical interest. There is good agreement between our calculations, for transition probabilities and radiative lifetimes, and the experimental values presented in the literature. We have not been able to find any values for the Stark parameters in the references.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density 0,produced by the (anomalous) absorption of a laser pulse of irradiation = (j>0f/T(0< (< T) at the critical density nc(«c/«0=eelectron heat conduction and ion-electron energy exchange and retains three dimensionless numbers: e, Zt (ion charge number), and a = (9/c/4m,) (T/C 2n l/4>oKe)213, where k, m, are Boltzmann's constant and the ion mass, and Ke X (electron temperature)5'2 = heat conductivity. If a >e- 4 ' 3 , a deflagration wave separates an isentropic compression with a shock bounding the undisturbed plasma, and an isentropic expansion flow to the vacuum. The structures of these three regions are completely determined; in particular, the Chapman-Jouguet condition is proved and the density behind the deflagration is found. The deflagration-compression thickness ratio is large (small) for a^e- 5 ' 3(a>e- 5 ' 3 ) . The compression to expansion ratio for both energy and thickness is 0(e"2). For Z,- large, a deflagration exists even if a~e~413. Condition a>e~4'3 may be applied to pulses that are not linear.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The one-dimensional self-similar motion of an initially cold, half-space plasma of electron density n,produced by the (anomalous) absorption of a laser pulse of irradiation

density nc, is considered; the analysis, which allows for electron heat conduction and ion-electron energy exchange, involves three dimensionless numbers: e = nc/n0 assumed small, Z, (ion charge number), and a parameter adensity is so small that the plasma becomes collisionless. The analysis is also invalid for a too small. Using results previously found for a>€~4'3, a qualitative discussion of how plasma behavior changes with a, is given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work we report theoretical Stark widths and shifts calculated using the Griem semi-empirical approach, corresponding to 237 spectral lines of MgIII. Data are presented for an electron density of 1017 cm?3 and temperatures T = 0.5?10.0 (104 K). The matrix elements used in these calculations have been determined from 23 configurations of MgIII: 2s22p6, 2s22p53p, 2s22p54p, 2s22p54f and 2s22p55f for even parity and 2s22p5ns (n = 3?6), 2s22p5nd (n = 3?9), 2s22p55g and 2s2p6np (n = 3?8) for odd parity. For the intermediate coupling (IC) calculations, we use the standard method of least-squares fitting from experimental energy levels by means of the Cowan computer code. Also, in order to test the matrix elements used in our calculations, we present calculated values of 70 transition probabilities of MgIII spectral lines and 14 calculated values of radiative lifetimes of MgIII levels. There is good agreement between our calculations and experimental radiative lifetimes. Spectral lines of MgIII are relevant in astrophysics and also play an important role in the spectral analysis of laboratory plasma. Theoretical trends of the Stark broadening parameter versus the temperature for relevant lines are presented. No values of Stark parameters can be found in the bibliography.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The outstanding problem for useful applications of electrodynamic tethers is obtaining sufficient electron current from the ionospheric plasma. Bare tether collectors, in which the conducting tether itself, left uninsulated over kilometers of its length, acts as the collecting anode, promise to attain currents of 10 A or more from reasonably sized systems. Current collection by a bare tether is also relatively insensitive to drops in electron density, which are regularly encountered on each revolution of an orbit. This makes nighttime operation feasible. We show how the bare tether's high efficiency of current collection and ability to adjust to density variations follow from the orbital motion limited collection law of thin cylinders. We consider both upwardly deployed (power generation mode) and downwardly deployed (reboost mode) tethers, and present results that indicate how bare tether systems would perform as their magnetic and plasma environment varies in low earth orbit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficiencies of electrodynamic-tether (EDT) thrusters made of single bare tethers with different types of cross sections, several parallel bare tethers, or a fully insulated tether with a three-dimensional passive end-collector, are discussed. Current collection, mass, and ohmic resistance considerations are balanced against each other in discussing efficiencies. Use is made of recent results on the validity domain of orbital-motion-limited (OML) collection, the current law beyond that domain, and interference effects between parallel bare tethers; and on current adjustment to variations in electron density encountered in orbit. Comparisons between EDT thrusters and electrical thrusters in terms of the ratio of dedicated mass to the total mission impulse show EDT to be superior for mission times over 50-100 days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrodynamic tethered systems, in which an exposed portion of the conducting tether itself collects electrons from the ionosphere, promise to attain currents of 10 A or more in low Earth orbit. For the first time, another desirable feature of such bare-tether systems is reported and analyzed in detail: Collection by a bare tether is relatively insensitive to variations in electron density that are regularly encountered on each revolution of an orbit. This self-adjusting property of bare-tether systems occurs because the electron-collecting area on the tether is not fixed, but extends along its positively biased portion, and because the current varies as collecting length to a power greater than unity. How this adjustment to density variations follows from the basic collection law of thin cylinders is shown. The effect of variations in the motionally induced tether voltage is also analyzed. Both power and thruster modes are considered. The performance of bare-tether systems to tethered systems is compared using passive spherical collectors of fixed area, taking into consideration recent experimental results. Calculations taking into account motional voltage and plasma density around a realistic orbit for bare-tether systems suitable for space station applications are also presented.