907 resultados para Electricity in dentistry.
Resumo:
Accounting for around 40% of the total final energy consumption, the building stock is an important area of focus on the way to reaching the energy goals set for the European Union. The relatively small share of new buildings makes renovation of existing buildings possibly the most feasible way of improving the overall energy performance of the building stock. This of course involves improvements on the climate shell, for example by additional insulation or change of window glazing, but also installation of new heating systems, to increase the energy efficiency and to fit the new heat load after renovation. In the choice of systems for heating, ventilation and air conditioning (HVAC), it is important to consider their performance for space heating as well as for domestic hot water (DHW), especially for a renovated house where the DHW share of the total heating consumption is larger. The present study treats the retrofitting of a generic single family house, which was defined as a reference building in a European energy renovation project. Three HVAC retrofitting options were compared from a techno-economic point of view: A) Air-to-water heat pump (AWHP) and mechanical ventilation with heat recovery (MVHR), B) Exhaust air heat pump (EAHP) with low-temperature ventilation radiators, and C) Gas boiler and ventilation with MVHR. The systems were simulated for houses with two levels of heating demand and four different locations: Stockholm, Gdansk, Stuttgart and London. They were then evaluated by means of life cycle cost (LCC) and primary energy consumption. Dynamic simulations were done in TRNSYS 17. In most cases, system C with gas boiler and MVHR was found to be the cheapest retrofitting option from a life cycle perspective. The advantage over the heat pump systems was particularly clear for a house in Germany, due to the large discrepancy between national prices of natural gas and electricity. In Sweden, where the price difference is much smaller, the heat pump systems had almost as low or even lower life cycle costs than the gas boiler system. Considering the limited availability of natural gas in Sweden, systems A and B would be the better options. From a primary energy point of view system A was the best option throughout, while system B often had the highest primary energy consumption. The limited capacity of the EAHP forced it to use more auxiliary heating than the other systems did, which lowered its COP. The AWHP managed the DHW load better due to a higher capacity, but had a lower COP than the EAHP in space heating mode. Systems A and C were notably favoured by the air heat recovery, which significantly reduced the heating demand. It was also seen that the DHW share of the total heating consumption was, as expected, larger for the house with the lower space heating demand. This confirms the supposition that it is important to include DHW in the study of HVAC systems for retrofitting.
Resumo:
uring periods of market stress, electricity prices can rise dramatically. Electricity retailers cannot pass these extreme prices on to customers because of retail price regulation. Improved prediction of these price spikes therefore is important for risk management. This paper builds a time-varying-probability Markov-switching model of Queensland electricity prices, aimed particularly at forecasting price spikes. Variables capturing demand and weather patterns are used to drive the transition probabilities. Unlike traditional Markov-switching models that assume normality of the prices in each state, the model presented here uses a generalised beta distribution to allow for the skewness in the distribution of electricity prices during high-price episodes.
Resumo:
The reliability of Critical Infrastructure is considered to be a fundamental expectation of modern societies. These large-scale socio-technical systems have always, due to their complex nature, been faced with threats challenging their ongoing functioning. However, increasing uncertainty in addition to the trend of infrastructure fragmentation has made reliable service provision not only a key organisational goal, but a major continuity challenge: especially given the highly interdependent network conditions that exist both regionally and globally. The notion of resilience as an adaptive capacity supporting infrastructure reliability under conditions of uncertainty and change has emerged as a critical capacity for systems of infrastructure and the organisations responsible for their reliable management. This study explores infrastructure reliability through the lens of resilience from an organisation and system perspective using two recognised resilience-enhancing management practices, High Reliability Theory (HRT) and Business Continuity Management (BCM) to better understand how this phenomenon manifests within a partially fragmented (corporatised) critical infrastructure industry – The Queensland Electricity Industry. The methodological approach involved a single case study design (industry) with embedded sub-units of analysis (organisations), utilising in-depth interviews and document analysis to illicit findings. Derived from detailed assessment of BCM and Reliability-Enhancing characteristics, findings suggest that the industry as a whole exhibits resilient functioning, however this was found to manifest at different levels across the industry and in different combinations. Whilst there were distinct differences in respect to resilient capabilities at the organisational level, differences were less marked at a systems (industry) level, with many common understandings carried over from the pre-corporatised operating environment. These Heritage Factors were central to understanding the systems level cohesion noted in the work. The findings of this study are intended to contribute to a body of knowledge encompassing resilience and high reliability in critical infrastructure industries. The research also has value from a practical perspective, as it suggests a range of opportunities to enhance resilient functioning under increasingly interdependent, networked conditions.
Resumo:
Australia’s efforts to transition to a low-emissions economy have stagnated following the successive defeats of the Carbon Pollution Reduction Scheme. This failure should not, however, be regarded as the end of Australia’s efforts to make this transition. In fact, the opportunity now exists for Australia to refine its existing arrangements to enable this transition to occur more effectively. The starting point for this analysis is the legal arrangements applying to the electricity generation sector, which is the largest sectoral emitter of anthropogenic greenhouse gas emissions in Australia. Without an effective strategy to mitigate this sector’s contribution to anthropogenic climate change, it is unlikely that Australia will be able to transition towards a low-emissions economy. It is on this basis that this article assesses the dominant national legal arrangement – the Renewable Energy Target – underpinning the electricity generation sector's efforts to become a low-emissions sector.
Electricity market equilibrium of thermal and wind generating plants in emission trading environment
Resumo:
The occurrence of extreme movements in the spot price of electricity represents a significant source of risk to retailers. A range of approaches have been considered with respect to modelling electricity prices; these models, however, have relied on time-series approaches, which typically use restrictive decay schemes placing greater weight on more recent observations. This study develops an alternative, semi-parametric method for forecasting, which uses state-dependent weights derived from a kernel function. The forecasts that are obtained using this method are accurate and therefore potentially useful to electricity retailers in terms of risk management.
Resumo:
This paper presents a series of operating schedules for Battery Energy Storage Companies (BESC) to provide peak shaving and spinning reserve services in the electricity markets under increasing wind penetration. As individual market participants, BESC can bid in ancillary services markets in an Independent System Operator (ISO) and contribute towards frequency and voltage support in the grid. Recent development in batteries technologies and availability of the day-ahead spot market prices would make BESC economically feasible. Profit maximization of BESC is achieved by determining the optimum capacity of Energy Storage Systems (ESS) required for meeting spinning reserve requirements as well as peak shaving. Historic spot market prices and frequency deviations from Australia Energy Market Operator (AEMO) are used for numerical simulations and the economic benefits of BESC is considered reflecting various aspects in Australia’s National Electricity Markets (NEM).
Resumo:
Electric Energy Storage (EES) is considered as one of the promising options for reducing the need for costly upgrades in distribution networks in Queensland (QLD). However, It is expected, the full potential for storage for distribution upgrade deferral cannot be fully realized due to high cost of EES. On the other hand, EES used for distribution deferral application can support a variety of complementary storage applications such as energy price arbitrage, time of use (TOU) energy cost reduction, wholesale electricity market ancillary services, and transmission upgrade deferral. Aggregation of benefits of these complementary storage applications would have the potential for increasing the amount of EES that may be financially attractive to defer distribution network augmentation in QLD. In this context, this paper analyzes distribution upgrade deferral, energy price arbitrage, TOU energy cost reduction, and integrated solar PV-storage benefits of EES devices in QLD.
Resumo:
Electricity network investment and asset management require accurate estimation of future demand in energy consumption within specified service areas. For this purpose, simple models are typically developed to predict future trends in electricity consumption using various methods and assumptions. This paper presents a statistical model to predict electricity consumption in the residential sector at the Census Collection District (CCD) level over the state of New South Wales, Australia, based on spatial building and household characteristics. Residential household demographic and building data from the Australian Bureau of Statistics (ABS) and actual electricity consumption data from electricity companies are merged for 74 % of the 12,000 CCDs in the state. Eighty percent of the merged dataset is randomly set aside to establish the model using regression analysis, and the remaining 20 % is used to independently test the accuracy of model prediction against actual consumption. In 90 % of the cases, the predicted consumption is shown to be within 5 kWh per dwelling per day from actual values, with an overall state accuracy of -1.15 %. Given a future scenario with a shift in climate zone and a growth in population, the model is used to identify the geographical or service areas that are most likely to have increased electricity consumption. Such geographical representation can be of great benefit when assessing alternatives to the centralised generation of energy; having such a model gives a quantifiable method to selecting the 'most' appropriate system when a review or upgrade of the network infrastructure is required.
Resumo:
In this article, we investigate eight and nine year old girls’ school and home use of the popular game Minecraft and the ways in which the girls ‘bring themselves into being’ through talk and digital production in the social spaces of the classroom and within the game’s multiplayer online world. This work was conducted as part of a broader digital games in education project involving primary and secondary school-aged students in Australia and focuses specifically on data collected from an all-girls primary school in Brisbane. We investigate the processes of identity construction that occur as the girls undertake practices of curatorship (Potter, 2012) to display their knowledge of Minecraft through discussion of the game, both ‘in world’ and in face-to-face interactions, and as they assemble resources within and around the game to design, build and display their creations and share stories about their game play. The article begins with a consideration of recent scholarship focussing on children, learning and digital culture and literacy practices before explaining how Minecraft is, in many ways, an exemplary instance of a digital game that promotes and enables complex practices of digital participation. We then introduce the concepts of performativity and recognition (Butler 1990, 2004, 2005) which, we argue, provide productive ways to theorise identity work within affinity groups. The article then outlines some background to the research project and our methodology before providing analysis of the data in the second half of the article. We conclude by outlining the implications of our investigation for the conceptualisation of learning spaces as affinity groups and for considering digital participation as curatorship.
Resumo:
This thesis introduces advanced Demand Response algorithms for residential appliances to provide benefits for both utility and customers. The algorithms are engaged in scheduling appliances appropriately in a critical peak day to alleviate network peak, adverse voltage conditions and wholesale price spikes also reducing the cost of residential energy consumption. Initially, a demand response technique via customer reward is proposed, where the utility controls appliances to achieve network improvement. Then, an improved real-time pricing scheme is introduced and customers are supported by energy management schedulers to actively participate in it. Finally, the demand response algorithm is improved to provide frequency regulation services.
Resumo:
Large-scale integration of non-inertial generators such as wind farms will create frequency stability issues due to reduced system inertia. Inertia based frequency stability study is important to predict the performance of power system with increased level of renewables. This paper focuses on the impact large-scale wind penetration on frequency stability of the Australian Power Network. MATLAB simulink is used to develop a frequency based dynamic model utilizing the network data from a simplified 14-generator Australian power system. The loss of generation is modeled as the active power disturbance and minimum inertia required to maintain the frequency stability is determined for five-area power system.