999 resultados para Electrical relaxation
Resumo:
The temperature dependent electrical transport behavior of n-n InGaN/Si heterostructures grown by plasma-assisted MBE was studied. Structural characteristics of the as-grown InGaN epilayers were evaluated high resolution X-ray diffraction and composition of InGaN was estimated from photoluminescence spectra using standard Vegard's law. Current density-voltage plots (J-V-T) revealed that the ideality factor (eta) and Schottky barrier height (SBH) (Phi(b)) are temperature dependent and the incorrect values of the Richardson's constant (A**) produced, suggests an inhomogeneous barrier at the heterostructure interface. The higher value of the ideality factor compared to the ideal value and its temperature dependence suggest that the current transport is mainly dominated by thermionic field emission. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report the geometrical effect of graded buckled multiwalled carbon nanotube arrays on the electrical transport properties in the diffusive regime, via successive breakdown caused by the Joule heating. This breakdown occurs in the straighter region. Empirical relations involving the current-carrying ability, resistance, breakdown power, threshold voltage, diameter and length of carbon nanotube arrays are discussed on the basis of an extensive set of experimental data along with justification. The experimental results are corroborated by the density functional tight-binding calculations of electronic band structure. The band gap decreases as buckleness increases leading to the enhancement in the current-carrying ability and elucidating the role of buckleness in carbon nanotubes. Copyright (c) EPLA, 2012
Resumo:
This paper presents an experimental study on damage assessment of reinforced concrete (RC) beams subjected to incremental cyclic loading. During testing acoustic emissions (AEs) were recorded. The analysis of the AE released was carried out by using parameters relaxation ratio, load ratio and calm ratio. Digital image correlation (DIC) technique and tracking with available MATLAB program were used to measure the displacement and surface strains in concrete. Earlier researchers classified the damage in RC beams using Kaiser effect, crack mouth opening displacement and proposed a standard. In general (or in practical situations), multiple cracks occur in reinforced concrete beams. In the present study damage assessment in RC beams was studied according to different limit states specified by the code of practice IS-456:2000 and AE technique. Based on the two ratios namely load ratio and calm ratio and when the deflection reached approximately 85% of the maximum allowable deflection it was observed that the RC beams were heavily damaged. The combination of AE and DIC techniques has the potential to provide the state of damage in RC structures.
Resumo:
We present an extensive study on the structural, electrical and optical properties of InN thin films grown on c-Al2O3, GaN(130 nm)/Al2O3, GaN(200 nm)/Al2O3 and GaN(4 mu m)/Al2O3 by using plasma-assisted molecular beam epitaxy. The high resolution X-ray diffraction study reveals better crystalline quality for the film grown on GaN(4 mu m)/Al2O3 as compared to others. The electronic and optical properties seem to be greatly influenced by the structural quality of the films, as can be evidenced from Hall measurement and optical absorption spectroscopy. Kane's k.p model was used to describe the dependence of optical absorption edge of InN films on carrier concentration by considering the non-parabolic dispersion relation for carrier in the conduction band. Room temperature Raman spectra for the InN films grown on GaN show the signature of residual tensile stress in contrast to the compressive stress observed for the films grown directly on c-Al2O3. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region.
Resumo:
Surface electrodes are essentially required to be switched for boundary data collection in electrical impedance tomography (Ell). Parallel digital data bits are required to operate the multiplexers used, generally, for electrode switching in ELT. More the electrodes in an EIT system more the digital data bits are needed. For a sixteen electrode system. 16 parallel digital data bits are required to operate the multiplexers in opposite or neighbouring current injection method. In this paper a common ground current injection is proposed for EIT and the resistivity imaging is studied. Common ground method needs only two analog multiplexers each of which need only 4 digital data bits and hence only 8 digital bits are required to switch the 16 surface electrodes. Results show that the USB based data acquisition system sequentially generate digital data required for multiplexers operating in common ground current injection method. The profile of the boundary data collected from practical phantom show that the multiplexers are operating in the required sequence in common ground current injection protocol. The voltage peaks obtained for all the inhomogeneity configurations are found at the accurate positions in the boundary data matrix which proved the sequential operation of multiplexers. Resistivity images reconstructed from the boundary data collected from the practical phantom with different configurations also show that the entire digital data generation module is functioning properly. Reconstructed images and their image parameters proved that the boundary data are successfully acquired by the DAQ system which in turn indicates a sequential and proper operation of multiplexers.
Resumo:
Low-complexity near-optimal detection of large-MIMO signals has attracted recent research. Recently, we proposed a local neighborhood search algorithm, namely reactive tabu search (RTS) algorithm, as well as a factor-graph based belief propagation (BP) algorithm for low-complexity large-MIMO detection. The motivation for the present work arises from the following two observations on the above two algorithms: i) Although RTS achieved close to optimal performance for 4-QAM in large dimensions, significant performance improvement was still possible for higher-order QAM (e.g., 16-, 64-QAM). ii) BP also achieved near-optimal performance for large dimensions, but only for {±1} alphabet. In this paper, we improve the large-MIMO detection performance of higher-order QAM signals by using a hybrid algorithm that employs RTS and BP. In particular, motivated by the observation that when a detection error occurs at the RTS output, the least significant bits (LSB) of the symbols are mostly in error, we propose to first reconstruct and cancel the interference due to bits other than LSBs at the RTS output and feed the interference cancelled received signal to the BP algorithm to improve the reliability of the LSBs. The output of the BP is then fed back to RTS for the next iteration. Simulation results show that the proposed algorithm performs better than the RTS algorithm, and semi-definite relaxation (SDR) and Gaussian tree approximation (GTA) algorithms.
Resumo:
The impact of chemical treatment on the surface morphology and other physical properties of tin monosulphide (SnS) thin films have been investigated. The SnS films treated with selected organic solvents exhibited strong improvement in their crystalline-quality and considerable decrease in electrical resistivity. Particularly, the films treated with chloroform showed very low electrical resistivity of similar to 5 Omega cm and a low optical band gap of 1.81 eV as compared to untreated and treated SnS films with other chemicals. From these studies we realized that the chemical treatment of SnS films has strong impact on their surface morphology and also on other physical properties. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Electrical switching studies on amorphous Ge17Te83−xSnx thin films (1 ≤ x ≤ 4) has been done to find their suitability for Phase Change Memory application; Bulk ingots in glassy form are prepared using conventional melt quenching technique and the thin films are coated using flash evaporation technique. Samples are found to exhibit memory type of electrical switching behavior. The switching voltages of Ge17Te83−xSnx thin films have been found to decrease with increase in Sn concentration. The comparatively lower switching voltages of Ge17Te83−xSnx samples, make them suitable candidates for phase change memory applications.
Resumo:
In this brief, we present a physics-based solution for the temperature-dependent electrical resistance of a suspended metallic single-layer graphene (SLG) sheet under Joule self-heating. The effect of in-plane and flexural phonons on the electron scattering rates for a doped SLG layer has been considered, which particularly demonstrates the variation of the electrical resistance with increasing temperature at different current levels using the solution of the self-heating equation. The present solution agrees well with the available experimental data done with back-gate electrostatic method over a wide range of temperatures.
Resumo:
The reentrant low temperature phase of the perovskite manganite LaMnO3+delta (delta=0.22) has been investigated with ac susceptibility and dc magnetization studies. A critical examination of the memory effects in ac susceptibility leads us to the conclusion that the slow dynamics in the system is a consequence of collective relaxation processes resulting from interactions between ferromagnetic clusters, whose presence was indicated in earlier studies. Here, we postulate that the collective behavior is due to the existence of long-range (dipolar) interactions between the large ferromagnetic `superspins'. This is also confirmed by an abnormally large microscopic spin-flip time (similar to 10(-9) s) compared to a canonical spin glass. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The thermal transitions in the copolymer of 1,6-hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) was investigated to understand its use in microstereolithography. The glass transition temperature and the effect of interaction on this transition process was investigated by means of temperature modulated differential scanning calorimetry (TMDSC). The heat capacities were determined and PHDDA rich phases showed lower heat capacity than PMMA rich phases. The frequency dependence of glass transitions were studied by varying the modulation period of TMDSC and confirmed by dielectric relaxation spectroscopy. Vogel Fulcher Tammann Hesse (VFTH) parameters of homo and copolymers have also been reported.
Resumo:
Nonequilibrium quasiparticle relaxation dynamics is reported in superconducting Ca(Fe0.944Co0.056)(2)As-2 single crystals by measuring transient reflectivity changes using femtosecond time-resolved pump-probe spectroscopy. Large changes in the temperature-dependent differential reflectivity values in the vicinity of the spin density wave (T-SDW) and superconducting (T-SC) transition temperatures of the sample have been inferred to have charge gap opening at those temperatures. We have estimated the zero-temperature charge gap value in the superconducting state to be similar to 1.8k(B)T(SC) and an electron-phonon coupling constant lambda of similar to 0.1 in the normal state that signifies the weak coupling in iron pnictides. From the peculiar temperature-dependence of the quasiparticle dynamics in the intermediate temperature region between T-SC and T-SDW we infer a temperature scale where the charge gap associated with the spin ordered phase is maximum and closes on either side while approaching the two phase transition temperatures.
Resumo:
We have studied the preparation of zinc oxide nanoparticles loaded in various weight percentages in ortho-chloropolyaniline by in situ polymerization method. The length of the O-chloropolyaniline tube is found to be 200 nm and diameter is about 150 nm wherein the embedded ZnO nanoparticles is of 13 nm as confirmed from scanning electron microscopy as well as transmission electron microscopy characterizations. The presence of the vibration band of the metal oxide and other characteristic bands confirms that the polymer nanocomposites are characterized by their Fourier transmission infrared spectroscopy. The X-ray diffraction pattern of nanocomposites reveals their polycrystalline nature. Electrical property of nanocomposites is a function of the filler as well as the matrix. Cole-Cole plots reveal the presence of well-defined semicircular arcs at high frequencies which are attributed to the bulk resistance of the material. Among all nanocomposites, 30 wt% shows the low relaxation time of 151 s, and hence it has high conductivity.
Resumo:
Here, we present a comprehensive investigation of the dc magnetization and magnetotransport studies on La0.85Sr0.15CoO3 single crystals grown by the optical float zone method. The spin freezing temperature in the ac susceptibility study shifts to lower value at higher dc field and this is well described by the de Almeida-Thouless line which is the characteristic of SG behavior. The Magnetotransport study shows that the sample exhibits a huge negative MR of similar to 70% at 10 K which monotonically decreases with the increase in temperature. Besides, the magnetization and the resistivity relaxation give strong indication that the MR scales with sample's magnetization. In essence, all the present experimental findings evidence the SG behavior of La0.85Sr0.15CoO3 single crystals.