981 resultados para Electrical distribution planning
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The literature on residences and citizens’ transports has focused on either reforming traffic managing in response to residential relocation or post-evaluation of urban planning policies or the evolution of the urban spatial form. In a city there are hotspots that attract the citizens and most of the transportation in the city arises as the citizens’ movement between their residence and the hotspots. Little scholarly attention has been devoted to the possibility to minimize citizens’ transportation in the city by the urban planning of residential areas. In this paper we propose a method to evaluate the environmental impact (in terms of CO2-emissions) of urban plans of residential areas. The method is illustrated in a Swedish case of a midsize city which is presently preoccupied with urban planning of new residential areas in response to substantial population growth due to immigration. The residential plans aims to increase the compactness and residential density in the current center and sub centers leads to less CO2 emissions compare to urban expansion to the edge of the city. The plans of concentrated apartment buildings are more effective in meeting residential needs and mitigating CO2 emissions than dispersed single-family houses.
Resumo:
With the prevalence of smartphones, new ways of engaging citizens and stakeholders in urban planning and govern-ance are emerging. The technologies in smartphones allow citizens to act as sensors of their environment, producing and sharing rich spatial data useful for new types of collaborative governance set-ups. Data derived from Volunteered Geographic Information (VGI) can support accessible, transparent, democratic, inclusive, and locally-based governance situations of interest to planners, citizens, politicians, and scientists. However, there are still uncertainties about how to actually conduct this in practice. This study explores how social media VGI can be used to document spatial tendencies regarding citizens’ uses and perceptions of urban nature with relevance for urban green space governance. Via the hashtag #sharingcph, created by the City of Copenhagen in 2014, VGI data consisting of geo-referenced images were collected from Instagram, categorised according to their content and analysed according to their spatial distribution patterns. The results show specific spatial distributions of the images and main hotspots. Many possibilities and much potential of using VGI for generating, sharing, visualising and communicating knowledge about citizens’ spatial uses and preferences exist, but as a tool to support scientific and democratic interaction, VGI data is challenged by practical, technical and ethical concerns. More research is needed in order to better understand the usefulness and application of this rich data source to governance.
Resumo:
The strategy to control the noxious water hyacinth requires reliable data base on the magnitude of the weed problem. This report which presents up to date (1997) information on distribution, coverage and movement of the weed in Uganda is intended to provide this basis as suppliment to other inputs for control planning. The report is the first in a series being prepared by FIRI from results the "Water hyacinth. research project" whose major goal is to supply information needed to define and focus the scope of the control process for water hyacinth in view of the fact that the weed is to remain a permanent feature of the aquatic landscape of Uganda. Water hyacinth is firmly established in lakes Victoria, Kyoga Albert and along the River Nile, distributed in two distinct forms namely as stationary fringes the shoreline and as mobile mats and large "fields" usually found in sheltered bays.
Resumo:
Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.
Resumo:
Short sea shipping has several advantages over other means of transportation, recognized by EU members. The maritime transportation could be dealt like a combination of two well-known problems: the container stowage problem and routing planning problem. The integration of these two well-known problems results in a new problem CSSRP (Container stowage and ship routing problem) that is also an hard combinatorial optimization problem. The aim of this work is to solve the CSSRP using a mixed integer programming model. It is proved that regardless the complexity of this problem, optimal solutions could be achieved in a reduced computational time. For testing the mathematical model some problems based on real data were generated and a sensibility analysis was performed.
Resumo:
Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.
Resumo:
Despite the extensive implementation of Superstreets on congested arterials, reliable methodologies for such designs remain unavailable. The purpose of this research is to fill the information gap by offering reliable tools to assist traffic professionals in the design of Superstreets with and without signal control. The entire tool developed in this thesis consists of three models. The first model is used to determine the minimum U-turn offset length for an Un-signalized Superstreet, given the arterial headway distribution of the traffic flows and the distribution of critical gaps among drivers. The second model is designed to estimate the queue size and its variation on each critical link in a signalized Superstreet, based on the given signal plan and the range of observed volumes. Recognizing that the operational performance of a Superstreet cannot be achieved without an effective signal plan, the third model is developed to produce a signal optimization method that can generate progression offsets for heavy arterial flows moving into and out of such an intersection design.
Resumo:
Pressure management (PM) is commonly used in water distribution systems (WDSs). In the last decade, a strategic objective in the field has been the development of new scientific and technical methods for its implementation. However, due to a lack of systematic analysis of the results obtained in practical cases, progress has not always been reflected in practical actions. To address this problem, this paper provides a comprehensive analysis of the most innovative issues related to PM. The methodology proposed is based on a case-study comparison of qualitative concepts that involves published work from 140 sources. The results include a qualitative analysis covering four aspects: (1) the objectives yielded by PM; (2) types of regulation, including advanced control systems through electronic controllers; (3) new methods for designing districts; and (4) development of optimization models associated with PM. The evolution of the aforementioned four aspects is examined and discussed. Conclusions regarding the current status of each factor are drawn and proposals for future research outlined
Resumo:
Using robotic systems for many missions that require power distribution can decrease the need for human intervention in such missions significantly. For accomplishing this capability a robotic system capable of autonomous navigation, power systems adaptation, and establishing physical connection needs to be developed. This thesis presents developed path planning and navigation algorithms for an autonomous ground power distribution system. In this work, a survey on existing path planning methods along with two developed algorithms by author is presented. One of these algorithms is a simple path planner suitable for implementation on lab-size platforms. A navigation hierarchy is developed for experimental validation of the path planner and proof of concept for autonomous ground power distribution system in lab environment. The second algorithm is a robust path planner developed for real-size implementation based on lessons learned from lab-size experiments. The simulation results illustrates that the algorithm is efficient and reliable in unknown environments. Future plans for developing intelligent power electronics and integrating them with robotic systems is presented. The ultimate goal is to create a power distribution system capable of regulating power flow at a desired voltage and frequency adaptable to load demands.
Resumo:
Harmonic distortion on voltages and currents increases with the increased penetration of Plug-in Electric Vehicle (PEV) loads in distribution systems. Wind Generators (WGs), which are source of harmonic currents, have some common harmonic profiles with PEVs. Thus, WGs can be utilized in careful ways to subside the effect of PEVs on harmonic distortion. This work studies the impact of PEVs on harmonic distortions and integration of WGs to reduce it. A decoupled harmonic three-phase unbalanced distribution system model is developed in OpenDSS, where PEVs and WGs are represented by harmonic current loads and sources respectively. The developed model is first used to solve harmonic power flow on IEEE 34-bus distribution system with low, moderate, and high penetration of PEVs, and its impact on current/voltage Total Harmonic Distortions (THDs) is studied. This study shows that the voltage and current THDs could be increased upto 9.5% and 50% respectively, in case of distribution systems with high PEV penetration and these THD values are significantly larger than the limits prescribed by the IEEE standards. Next, carefully sized WGs are selected at different locations in the 34-bus distribution system to demonstrate reduction in the current/voltage THDs. In this work, a framework is also developed to find optimal size of WGs to reduce THDs below prescribed operational limits in distribution circuits with PEV loads. The optimization framework is implemented in MATLAB using Genetic Algorithm, which is interfaced with the harmonic power flow model developed in OpenDSS. The developed framework is used to find optimal size of WGs on the 34-bus distribution system with low, moderate, and high penetration of PEVs, with an objective to reduce voltage/current THD deviations throughout the distribution circuits. With the optimal size of WGs in distribution systems with PEV loads, the current and voltage THDs are reduced below 5% and 7% respectively, which are within the limits prescribed by IEEE.
Resumo:
Liver cancer accounts for nearly 10% of all cancers in the US. Intrahepatic Arterial Radiomicrosphere Therapy (RMT), also known as Selective Internal Radiation Treatment (SIRT), is one of the evolving treatment modalities. Successful patient clinical outcomes require suitable treatment planning followed by delivery of the microspheres for therapy. The production and in vitro evaluation of various polymers (PGCD, CHS and CHSg) microspheres for a RMT and RMT planning are described. Microparticles with a 30±10 µm size distribution were prepared by emulsion method. The in vitro half-life of the particles was determined in PBS buffer and porcine plasma and their potential application (treatment or treatment planning) established. Further, the fast degrading microspheres (≤ 48 hours in vitro half-life) were labeled with 68Ga and/or 99mTc as they are suitable for the imaging component of treatment planning, which is the primary emphasis of this dissertation. Labeling kinetics demonstrated that 68Ga-PGCD, 68Ga-CHSg and 68Ga-NOTA-CHSg can be labeled with more than 95% yield in 15 minutes; 99mTc-PGCD and 99mTc-CHSg can also be labeled with high yield within 15-30 minutes. In vitro stability after four hours was more than 90% in saline and PBS buffer for all of them. Experiments in reconstituted hemoglobin lysate were also performed. Two successful imaging (RMT planning) agents were found: 99mTc-CHSg and 68Ga-NOTA-CHSg. For the 99mTc-PGCD a successful perfusion image was obtained after 10 minutes, however the in vivo degradation was very fast (half-life), releasing the 99mTc from the lungs. Slow degrading CHS microparticles (> 21 days half-life) were modified with p-SCN-b-DOTA and labeled with 90Y for production of 90Y-DOTA-CHS. Radiochemical purity was evaluated in vitro and in vivo showing more than 90% stability after 72 and 24 hours respectively. All agents were compared to their respective gold standards (99mTc-MAA for 68Ga-NOTA-CHSg and 99mTc-CHSg; 90Y-SirTEX for 90Y-DOTA-CHS) showing superior in vivo stability. RMT and RMT planning agents (Therapy, PET and SPECT imaging) were designed and successfully evaluated in vitro and in vivo.
Resumo:
In this paper, the IEEE 14 bus test system is used in order to perform adequacy assessment of a transmission system when large scale integration of electric vehicles is considered at distribution levels. In this framework, the symmetric/constr ained fuzzy power flow (SFPF/CFPF) was proposed. The SFPF/CFPF models are suitable to quantify the adequacy of transmission network to satisfy “reasonable demands for the transmission of electricity” as defined, for instance, in the European Directive 2009/72/EC. In this framework, electric vehicles of different types will be treated as fuzzy loads configuring part of the “reasonable demands”. With this study, it is also intended to show how to evaluate the amount of EVs that can be safely accommodated to the grid meeting a certain adequacy level.
Resumo:
In recent years, the 380V DC and 48V DC distribution systems have been extensively studied for the latest data centers. It is widely believed that the 380V DC system is a very promising candidate because of its lower cable cost compared to the 48V DC system. However, previous studies have not adequately addressed the low reliability issue with the 380V DC systems due to large amount of series connected batteries. In this thesis, a quantitative comparison for the two systems has been presented in terms of efficiency, reliability and cost. A new multi-port DC UPS with both high voltage output and low voltage output is proposed. When utility ac is available, it delivers power to the load through its high voltage output and charges the battery through its low voltage output. When utility ac is off, it boosts the low battery voltage and delivers power to the load form the battery. Thus, the advantages of both systems are combined and the disadvantages of them are avoided. High efficiency is also achieved as only one converter is working in either situation. Details about the design and analysis of the new UPS are presented. For the main AC-DC part of the new UPS, a novel bridgeless three-level single-stage AC-DC converter is proposed. It eliminates the auxiliary circuit for balancing the capacitor voltages and the two bridge rectifier diodes in previous topology. Zero voltage switching, high power factor, and low component stresses are achieved with this topology. Compared to previous topologies, the proposed converter has a lower cost, higher reliability, and higher efficiency. The steady state operation of the converter is analyzed and a decoupled model is proposed for the converter. For the battery side converter as a part of the new UPS, a ZVS bidirectional DC-DC converter based on self-sustained oscillation control is proposed. Frequency control is used to ensure the ZVS operation of all four switches and phase shift control is employed to regulate the converter output power. Detailed analysis of the steady state operation and design of the converter are presented. Theoretical, simulation, and experimental results are presented to verify the effectiveness of the proposed concepts.
Resumo:
We modelled the distributions of two toads (Bufo bufo and Epidalea calamita) in the Iberian Peninsula using the favourability function, which makes predictions directly comparable for different species and allows fuzzy logic operations to relate different models. The fuzzy intersection between individual models, representing favourability for the presence of both species simultaneously, was compared with another favourability model built on the presences shared by both species. The fuzzy union between individual models, representing favourability for the presence of any of the two species, was compared with another favourabilitymodel based on the presences of either or both of them. The fuzzy intersections between favourability for each species and the complementary of favourability for the other (corresponding to the logical operation “A and not B”) were compared with models of exclusive presence of one species versus the exclusive presence of the other. The results of modelling combined species data were highly similar to those of fuzzy logic operations between individual models, proving fuzzy logic and the favourability function valuable for comparative distribution modelling. We highlight several advantages of fuzzy logic over other forms of combining distribution models, including the possibility to combine multiple species models for management and conservation planning.