879 resultados para Ecological Assessments
Resumo:
'The ecological emergency’ describes both our emergence into, and the way we relate within, a set of globally urgent circumstances, brought about through anthropogenic impact. I identify two phases to this emergency. Firstly, there is the anthropogenic impact itself, interpreted through various conceptual models. Secondly, however, is the increasingly entrenched commitment to divergent conceptual positions, that leads to a growing disparateness in attitudes, and a concurrent difficulty with finding any grounds for convergence in response. I begin by reviewing the environmental ethics literature in order to clarify which components of the implicit narratives and beliefs of different positions create the foundations for such disparateness of views. I identify the conceptual frameworks through which moral agency and human responsibility are viewed, and that justify an ethical response to the ecological emergency. In particular, I focus on Paul Taylor's thesis of 'respect for nature' as a framework for revising both the idea that we are ‘moral’ and the idea that we are ‘agents’ in this unique way, and I open to question the idea that any response to the ecological emergency need be couched in ethical terms. This revision leads me to formulate an alternative conceptual model that makes use of Timothy Morton’s idea of enmeshment. I propose that we dramatically revise our idea of moral agency using the idea of enmeshment as a starting point. I develop an alternative framework that locates our capacity for responsibility within our capacity for realisation, both in the sense of understanding, and of making real, sets of conditions within our enmeshment. I draw parallels between this idea of ‘realisation as agency’ and the work of Dōgen and other non-dualists. I then propose a revised understanding of ‘the good’ of systems from a biophysical perspective, and compare this with certain features of Asian traditions of thought. I consider the practical implications of these revisions, and I conclude that the act of paying close attention, or realising, contains our agency, as does the attitude, or manner, with which we focus. This gives us the basis for a convergent response to the ecological emergency: the way of our engagement that is the key to responding to the ecological emergency
Resumo:
A set of 13 US based experts in post-combustion and oxy-fuel combustion CO2 capture systems responded to an extensive questionnaire asking their views on the present status and future expected performance and costs for amine-based, chilled ammonia, and oxy-combustion retrofits of coal-fired power plants. This paper presents the experts' responses for technology maturity, ideal plant characteristics for early adopters, and the extent to which R&D and deployment incentives will impact costs. It also presents the best estimates and 95% confidence limits of the energy penalties associated with amine-based systems. The results show a general consensus that amine-based systems are closer to commercial application, but potential for improving performance and lowering costs is limited; chilled ammonia and oxy-combustion offer greater potential for cost reductions, but not without greater uncertainty regarding scale and technical feasibility. © 2011 Elsevier Ltd.
Resumo:
During ecological speciation, divergent natural selection drives evolution of ecological specialization and genetic differentiation of populations on alternate environments. Populations diverging onto the same alternate environments may be geographically widespread, so that divergence may occur at an array of locations simultaneously. Spatial variation in the process of divergence may produce a pattern of differences in divergence among locations called the Geographic Mosaic of Divergence. Diverging populations may vary in their degree of genetic differentiation and ecological specialization among locations. My dissertation examines the pattern and evolutionary processes of divergence in pea aphids (Acyrthosiphon pisum) on alfalfa (Medicago sativa) and clover (Trifolium pretense). In Chapter One, I examined differences among North American aphid populations in genetic differentiation at nuclear, sequence-based markers and in ecological specialization, measured as aphid fecundity on each host plant. In the East, aphids showed high host-plant associated ecological specialization and high genetic differentiation. In the West, aphids from clover were genetically indistinguishable from aphids on alfalfa, and aphids from clover were less specialized. Thus, the pattern of divergence differed among locations, suggesting a Geographic Mosaic of Divergence. In Chapter Two, I examined genomic heterogeneity in divergence in aphids on alfalfa and clover across North America using amplified fragment length polymorphisms (AFLPs). The degree of genetic differentiation varied greatly among markers, suggesting that divergent natural selection drives aphid divergence in all geographic locations. Three of the same genetic markers were identified as evolving under divergent selection in the eastern and western regions, and additional divergent markers were identified in the East. In Chapter Three, I investigated population structure of aphids in North America, France, and Sweden using AFLPs. Aphids on the same host plant were genetically similar across many parts of their range, so the evolution of host plant specialization does not appear to have occurred independently in every location. While aphids on alfalfa and clover were genetically differentiated in most locations, aphids from alfalfa and clover were genetically similar in both western North America and Sweden. High gene flow from alfalfa onto clover may constrain divergence in these locations.
Resumo:
Atlantic croaker Micropogonias undulatus is a commercially and ecologically important bottom-associated fish that occurs in marine and estuarine systems from Cape Cod, MA to Mexico. I documented the temporal and spatial variability in the diet of Atlantic croaker in Chesapeake Bay and found that in the summer fish, particularly bay anchovies Anchoa mitchilli, make up at least 20% of the diet of croaker by weight. The use of a pelagic food source seems unusual for a bottom-associated fish such as croaker, but appears to be a crepuscular feeding habit that has not been previously detected. Thus, I investigated the bioenergetic consequences of secondary piscivory to the distribution of croaker, to the condition of individuals within the population and to the ecosystem. Generalized additive models revealed that the biomass of anchovy explained some of the variability in croaker occurrence and abundance in Chesapeake Bay. However, physical factors, specifically temperature, salinity, and seasonal dynamics were stronger determinants of croaker distribution than potential prey availability. To better understand the bioenergetic consequences of diet variability at the individual level, I tested the hypothesis that croaker feeding on anchovies would be in better condition than those feeding on polychaetes using a variety of condition measures that operate on multiple time scales, including RNA:DNA, Fulton's condition factor (K), relative weight (Wr), energy density, hepatosomatic index (HSI), and gonadosomatic index (GSI). Of these condition measures, several morphometric measures were significantly positively correlated with each other and with the percentage (by weight) of anchovy in croaker diets, suggesting that the type of prey eaten is important in improving the overall condition of individual croaker. To estimate the bioenergetic consequences of diet variability on growth and consumption in croaker, I developed and validated a bioenergetic model for Atlantic croaker in the laboratory. The application of this model suggested that croaker could be an important competitor with weakfish and striped bass for food resources during the spring and summer when population abundances of these three fishes are high in Chesapeake Bay. Even though anchovies made up a relatively small portion of croaker diet and only at certain times of the year, croaker consumed more anchovy at the population level than striped bass in all simulated years and nearly as much anchovy as weakfish. This indicates that weak trophic interactions between species are important in understanding ecosystem processes and should be considered in ecosystem-based management.
Resumo:
Limb, trunk, and body weight measurements were obtained for growth series of Milne-Edwards's diademed sifaka, Propithecus diadema edwardsi, and the golden-crowned sifaka, Propithecus tattersalli. Similar measures were obtained also for primarily adults of two subspecies of the western sifaka: Propithecus verreauxi coquereli, Coquerel's sifaka, and Propithecus verreauxi verreauxi, Verreaux's sifaka. Ontogenetic series for the larger-bodied P. d. edwardsi and the smaller-bodied P. tattersalli were compared to evaluate whether species-level differences in body proportions result from the differential extension of common patterns of relative growth. In bivariate plots, both subspecies of P. verreauxi were included to examine whether these taxa also lie along a growth trajectory common to all sifakas. Analyses of the data indicate that postcranial proportions for sifakas are ontogenetically scaled, much as demonstrated previously with cranial dimensions for all three species (Ravosa, 1992). As such, P. d. edwardsi apparently develops larger overall size primarily by growing at a faster rate, but not for a longer duration of time, than P. tattersalli and P. verreauxi; this is similar to results based on cranial data. A consideration of Malagasy lemur ecology suggests that regional differences in forage quality and resource availability have strongly influenced the evolutionary development of body-size variation in sifakas. On one hand, the rainforest environment of P. d. edwardsi imposes greater selective pressures for larger body size than the dry-forest environment of P. tattersalli and P. v. coquereli, or the semi-arid climate of P. v. verreauxi. On the other hand, as progressively smaller-bodied adult sifakas are located in the east, west, and northwest, this apparently supports suggestions that adult body size is set by dry-season constraints on food quality and distribution (i.e., smaller taxa are located in more seasonal habitats such as the west and northeast). Moreover, the fact that body-size differentiation occurs primarily via differences in growth rate is also due apparently to differences in resource seasonality (and juvenile mortality risk in turn) between the eastern rainforest and the more temperate northeast and west. Most scaling coefficients for both arm and leg growth range from slight negative allometry to slight positive allometry. Given the low intermembral index for sifakas, which is also an adaptation for propulsive hindlimb-dominated jumping, this suggests that differences in adult limb proportions are largely set prenatally rather than being achieved via higher rates of postnatal hindlimb growth.(ABSTRACT TRUNCATED AT 400 WORDS)
Resumo:
My goal was to describe how biological and ecological factors give shape to fishing practices that can contribute to the successful self-governance of a small-scale fishing system in the Gulf of California, Mexico. The analysis was based on a comparison of the main ecological and biological indicators that fishers claim to use to govern their day-to-day decision making about fishing and data collected in situ. I found that certain indicators allow fishers to learn about differences and characteristics of the resource system and its units. Fishers use such information to guide their day-to-day fishing decisions. More importantly, these decisions appear unable to shape the reproductive viability of the fishery because no indicators were correlated to the reproductive cycle of the target species. As a result, the fishing practices constitute a number of mechanisms that might provide short-term buffering capacity against perturbations or stress factors that otherwise would threaten the overall sustainability and self-governance of the system. The particular biological circumstances that shape the harvesting practices might also act as a precursor of self-governance because they provide fishers with enough incentives to meet the costs of organizing the necessary rule structure that underlies a successful self-governance system.
Resumo:
The goal of this paper is to improve our understanding of the role of institutional arrangements and ecological factors that facilitate the emergence and sustainability of successful collective action in small-scale fishing social-ecological systems. Using a modified logistic growth function, we simulate how ecological factors (i.e. carrying capacity) affect small-scale fishing communities with varying degrees of institutional development (i.e. timeliness to adopt new institutions and the degree to which harvesting effort is reduced), in their ability to avoid overexploitation. Our results show that strong and timely institutions are necessary but not sufficient to maintain sustainable harvests over time. The sooner communities adopt institutions, and the stronger the institutions they adopt, the more likely they are to sustain the resource stock. Exactly how timely the institutions must be adopted, and by what amount harvesting effort must be diminished, depends on the ecological carrying capacity of the species at the particular location. Small differences in the carrying capacity between fishing sites, even under scenarios of similar institutional development, greatly affects the likelihood of effective collective action. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.
Resumo:
Evolution occurring over contemporary time scales can have important effects on populations, communities, and ecosystems. Recent studies show that the magnitude of these effects can be large and can generate feedbacks that further shape evolution.
Resumo:
The distribution and movement of water can influence the state and dynamics of terrestrial and aquatic ecosystems through a diversity of mechanisms. These mechanisms can be organized into three general categories wherein water acts as (1) a resource or habitat for biota, (2) a vector for connectivity and exchange of energy, materials, and organisms, and (3) as an agent of geomorphic change and disturbance. These latter two roles are highlighted in current models, which emphasize hydrologic connectivity and geomorphic change as determinants of the spatial and temporal distributions of species and processes in river systems. Water availability, on the other hand, has received less attention as a driver of ecological pattern, despite the prevalence of intermittent streams, and strong potential for environmental change to alter the spatial extent of drying in many regions. Here we summarize long-term research from a Sonoran Desert watershed to illustrate how spatial patterns of ecosystem structure and functioning reflect shifts in the relative importance of different 'roles of water' across scales of drainage size. These roles are distributed and interact hierarchically in the landscape, and for the bulk of the drainage network it is the duration of water availability that represents the primary determinant of ecological processes. Only for the largest catchments, with the most permanent flow regimes, do flood-associated disturbances and hydrologic exchange emerge as important drivers of local dynamics. While desert basins represent an extreme case, the diversity of mechanisms by which the availability and flow of water influence ecosystem structure and functioning are general. Predicting how river ecosystems may respond to future environmental pressures will require clear understanding of how changes in the spatial extent and relative overlap of these different roles of water shape ecological patterns. © 2013 Sponseller et al.
Resumo:
A visually apparent but scientifically untested outcome of land-use change is homogenization across urban areas, where neighborhoods in different parts of the country have similar patterns of roads, residential lots, commercial areas, and aquatic features. We hypothesize that this homogenization extends to ecological structure and also to ecosystem functions such as carbon dynamics and microclimate, with continental-scale implications. Further, we suggest that understanding urban homogenization will provide the basis for understanding the impacts of urban land-use change from local to continental scales. Here, we show how multi-scale, multidisciplinary datasets from six metropolitan areas that cover the major climatic regions of the US (Phoenix, AZ; Miami, FL; Baltimore, MD; Boston, MA; Minneapolis-St Paul, MN; and Los Angeles, CA) can be used to determine how household and neighborhood characteristics correlate with land-management practices, land-cover composition, and landscape structure and ecosystem functions at local, regional, and continental scales. © The Ecological Society of America.
Resumo:
Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents. © The Ecological Society of America.
Resumo:
PURPOSE: The readiness assurance process (RAP) of team-based learning (TBL) is an important element that ensures that students come prepared to learn. However, the RAP can use a significant amount of class time which could otherwise be used for application exercises. The authors administered the TBL-associated RAP in class or individual readiness assurance tests (iRATs) at home to compare medical student performance and learning preference for physiology content. METHODS: Using cross-over study design, the first year medical student TBL teams were divided into two groups. One group was administered iRATs and group readiness assurance tests (gRATs) consisting of physiology questions during scheduled class time. The other group was administered the same iRAT questions at home, and did not complete a gRAT. To compare effectiveness of the two administration methods, both groups completed the same 12-question physiology assessment during dedicated class time. Four weeks later, the entire process was repeated, with each group administered the RAP using the opposite method. RESULTS: The performance on the physiology assessment after at-home administration of the iRAT was equivalent to performance after traditional in-class administration of the RAP. In addition, a majority of students preferred the at-home method of administration and reported that the at-home method was more effective in helping them learn course content. CONCLUSION: The at-home administration of the iRAT proved effective. The at-home administration method is a promising alternative to conventional iRATs and gRATs with the goal of preserving valuable in-class time for TBL application exercises.
Resumo:
Olfactory receptors (ORs) govern a prime sensory function. Extant birds have distinct olfactory abilities, but the molecular mechanisms underlining diversification and specialization remain mostly unknown. We explored OR diversity in 48 phylogenetic and ecologically diverse birds and 2 reptiles (alligator and green sea turtle). OR subgenomes showed species- and lineage-specific variation related with ecological requirements. Overall 1,953 OR genes were identified in reptiles and 16,503 in birds. The two reptiles had larger OR gene repertoires (989 and 964 genes, respectively) than birds (182-688 genes). Overall, birds had more pseudogenes (7,855) than intact genes (1,944). The alligator had significantly more functional genes than sea turtle, likely because of distinct foraging habits. We found rapid species-specific expansion and positive selection in OR14 (detects hydrophobic compounds) in birds and in OR51 and OR52 (detect hydrophilic compounds) in sea turtle, suggestive of terrestrial and aquatic adaptations, respectively. Ecological partitioning among birds of prey, water birds, land birds, and vocal learners showed that diverse ecological factors determined olfactory ability and influenced corresponding olfactory-receptor subgenome. OR5/8/9 was expanded in predatory birds and alligator, suggesting adaptive specialization for carnivory. OR families 2/13, 51, and 52 were correlated with aquatic adaptations (water birds), OR families 6 and 10 were more pronounced in vocal-learning birds, whereas most specialized land birds had an expanded OR family 14. Olfactory bulb ratio (OBR) and OR gene repertoire were correlated. Birds that forage for prey (carnivores/piscivores) had relatively complex OBR and OR gene repertoires compared with modern birds, including passerines, perhaps due to highly developed cognitive capacities facilitating foraging innovations.