896 resultados para Early gestural development
Resumo:
The purpose of this study was to analyse the developmental pathway of skilled and less skilled volleyball players by focusing on the quantity and type of sporting activities, as well as their age and height in comparison to peers in those experiences. Retrospective interviews were conducted to provide a longitudinal and detailed account of sport involvement of 30 skilled and 30 less skilled volleyball players (15 male and 15 female players per group) throughout different developmental stages (stage 1: 8-12 years; stage 2: 13-16 years; stage 3: 17-20 years). Results indicated that the developmental pathway of these volleyball players (i.e. skilled and less skilled) was characterized by an early diversified sport involvement with a greater participation in sport activities during stages 1 and 2. However, skilled players specialized later in volleyball (between age 14 and 15) and performed more hours of volleyball at stage 3 (from 17 years of age onwards). Also, skilled players (male and female) were younger in both the diversified sport activities and volleyball at the later stages of development (i.e. stages 2 and 3), and skilled female players were taller than peers in those activities in the early stages of development (i.e. stages 1 and 2). The present findings suggest early diversification as a feasible pathway to reach expertise in volleyball and highlight the importance of practicing with older peers once specialization in the main sport has occurred. The findings highlight the need for coaches and sport programs to consider different stimuli existing within the training environment (i.e. characteristics of athletes, such as age and height) that influence the quality of practice and contribute to players’ expertise development.
Resumo:
The development of zebrafish paired fins and tetrapod forelimbs and hindlimbs show striking similarities at the molecular level. In recent years, the zebrafish, Danio rerio has become a valuable model for the study of the development of vertebrate paired appendages and several large-scale mutagenesis screens have identified novel fin mutants. This review summarizes recent advances in research into zebrafish paired fin development and highlights features that are shared with and distinct from limb development in other main animal models.
Resumo:
Thesis--Univ. of Pennsylvania.
Resumo:
Bibliography: p. 143-147.
Resumo:
Mode of access: Internet.
Resumo:
In three parts; pt. I-II reprinted from the Records of the Columbia historical society.
Resumo:
Plate "Philadelphia typographical society," facing pl 56, accompanied by leaf with descriptive letterpress.
Resumo:
Vol. 1 reprinted from The Journal of comparative pathology and therapeutics, 1912-18; v. 2 from The Veterinary journal, 1923-24; v. 3 from The Veterinary journal, 1929-30.
Resumo:
Robert E. Whitmoyer, OARDC Historical Records Officer.
Resumo:
"ETA Occasional Paper 2008-03."
Resumo:
Mode of access: Internet.
Resumo:
As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensori-motor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuospatial body knowledge in infancy. Our technique is to compare infants' responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body pictures at 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.