845 resultados para EXTENSOR INDICIS MUSCLE
Resumo:
BACKGROUND: Studies on hexaminolevulinate (HAL) cystoscopy report improved detection of bladder tumours. However, recent meta-analyses report conflicting effects on recurrence. OBJECTIVE: To assess available clinical data for blue light (BL) HAL cystoscopy on the detection of Ta/T1 and carcinoma in situ (CIS) tumours, and on tumour recurrence. DESIGN, SETTING, AND PARTICIPANTS: This meta-analysis reviewed raw data from prospective studies on 1345 patients with known or suspected non-muscle-invasive bladder cancer (NMIBC). INTERVENTION: A single application of HAL cystoscopy was used as an adjunct to white light (WL) cystoscopy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We studied the detection of NMIBC (intention to treat [ITT]: n=831; six studies) and recurrence (per protocol: n=634; three studies) up to 1 yr. DerSimonian and Laird's random-effects model was used to obtain pooled relative risks (RRs) and associated 95% confidence intervals (CIs) for outcomes for detection. RESULTS AND LIMITATIONS: BL cystoscopy detected significantly more Ta tumours (14.7%; p<0.001; odds ratio [OR]: 4.898; 95% CI, 1.937-12.390) and CIS lesions (40.8%; p<0.001; OR: 12.372; 95% CI, 6.343-24.133) than WL. There were 24.9% patients with at least one additional Ta/T1 tumour seen with BL (p<0.001), significant also in patients with primary (20.7%; p<0.001) and recurrent cancer (27.7%; p<0.001), and in patients at high risk (27.0%; p<0.001) and intermediate risk (35.7%; p=0.004). In 26.7% of patients, CIS was detected only by BL (p<0.001) and was also significant in patients with primary (28.0%; p<0.001) and recurrent cancer (25.0%; p<0.001). Recurrence rates up to 12 mo were significantly lower overall with BL, 34.5% versus 45.4% (p=0.006; RR: 0.761 [0.627-0.924]), and lower in patients with T1 or CIS (p=0.052; RR: 0.696 [0.482-1.003]), Ta (p=0.040; RR: 0.804 [0.653-0.991]), and in high-risk (p=0.050) and low-risk (p=0.029) subgroups. Some subgroups had too few patients to allow statistically meaningful analysis. Heterogeneity was minimised by the statistical analysis method used. CONCLUSIONS: This meta-analysis confirms that HAL BL cystoscopy significantly improves the detection of bladder tumours leading to a reduction of recurrence at 9-12 mo. The benefit is independent of the level of risk and is evident in patients with Ta, T1, CIS, primary, and recurrent cancer.
Resumo:
PURPOSE: The present study was designed to determine the stimulation intensity necessary for an adequate assessment of central and peripheral components of neuromuscular fatigue of the knee extensors. METHODS: Three different stimulation intensities (100, 120 and 150 % of the lowest intensity evoking a plateau in M-waves and twitch amplitudes, optimal stimulation intensity, OSI) were used to assess voluntary activation level (VAL) as well as M-wave, twitch and doublet amplitudes before, during and after an incremental isometric exercise performed by 14 (8 men) healthy and physically active volunteers. A visual analog scale was used to evaluate the associated discomfort. RESULTS: There was no difference (p > 0.05) in VAL between the three intensities before and after exercise. However, we found that stimulating at 100 % OSI may overestimate the extent of peripheral fatigue during exercise, whereas 150 % OSI stimulations led to greater discomfort associated with doublet stimulations as well as to an increased antagonist co-activation compared to 100 % OSI. CONCLUSION: We recommend using 120 % OSI, as it constitutes a good trade-off between discomfort and reliable measurements.
Resumo:
OBJECTIVE: To report the magnetic resonance imaging (MRI) findings in athletic injuries of the extensor carpi ulnaris (ECU) subsheath, assessing the utility of gadolinium-enhanced (Gd) fat-saturated (FS) T1-weighted sequences with wrist pronation and supination. METHODS: Sixteen patients (13 male, three female; mean age 30.3 years) with athletic injuries of the ECU subsheath sustained between January 2003 and June 2009 were included in this retrospective study. Initial and follow-up 1.5-T wrist MRIs were performed with transverse T1-weighted and STIR sequences in pronation, and Gd FS T1-weighted sequences with wrist pronation and supination. Two radiologists assessed the type of injury (A to C), ECU tendon stability, associated lesions and rated pulse sequences using a three-point scale: 1=poor, 2=good and 3=excellent. RESULTS: Gd-enhanced FS T1-weighted transverse sequences in supination (2.63) and pronation (2.56) were most valuable, compared with STIR (2.19) and T1-weighted (1.94). Nine type A, one type B and six type C injuries were found. There were trends towards diminution in size, signal intensity and enhancement of associated pouches on follow-up MRI and tendon stabilisation within the ulnar groove. CONCLUSION: Gd-enhanced FS T1-weighted sequences with wrist pronation and supination are most valuable in assessing and follow-up athletic injuries of the ECU subsheath on 1.5-T MRI.
Resumo:
This study aimed to assess application of ultrasound (US) combined with microbubbles (MB) to transfect the ciliary muscle of rat eyes. Reporter DNA plasmids encoding for Gaussia luciferase, β-galactosidase or the green fluorescent protein (GFP), alone or mixed with 50% Artison MB, were injected into the ciliary muscle, with or without US exposure (US set at 1 MHz, 2 W/cm(2), 50% duty cycle for 2 min). Luciferase activity was measured in ocular fluids at 7 and 30 days after sonoporation. At 1 week, the US+MB treatment showed a significant increase in luminescence compared with control eyes, injected with plasmid only, with or without MB (×2.6), and, reporter proteins were localized in the ciliary muscle by histochemical analysis. At 1 month, a significant decrease in luciferase activity was observed in all groups. A rise in lens and ciliary muscle temperature was measured during the procedure but did not result in any observable or microscopic damages at 1 and 8 days. The feasibility to transfer gene into the ciliary muscle by US and MB suggests that sonoporation may allow intraocular production of proteins for the treatment of inflammatory, angiogenic and/or degenerative retinal diseases.
Resumo:
OBJECTIVE: Prospective non-randomised comparison of full-thickness pedicled diaphragm flap with intercostal muscle flap in terms of morbidity and efficiency for bronchial stump coverage after induction therapy followed by pneumonectomy for non-small cell lung cancer (NSCLC). METHODS: Between 1996 and 1998, a consecutive series of 26 patients underwent pneumonectomy following induction therapy. Half of the patients underwent mediastinal reinforcement by use of a pedicled intercostal muscle flap (IF) and half of the patients by use of a pedicled full-thickness diaphragm muscle flap (DF). Patients in both groups were matched according to age, gender, side of pneumonectomy and stage of NSCLC. Postoperative morbidity and mortality were recorded. Six months follow-up including physical examination and pulmonary function testing was performed to examine the incidence of bronchial stump fistulae, gastro-esophageal disorders or chest wall complaints. RESULTS: There was no 30-day mortality in both groups. Complications were observed in one of 13 patients after IF and five of 13 after DF including pneumonia in two (one IF and one DF), visceral herniations in three (DF) and bronchopleural fistula in one patient (DF). There were no symptoms of gastro-esophageal reflux disease (GERD). Postoperative pulmonary function testing revealed no significant differences between the two groups. CONCLUSIONS: Pedicled intercostal and diaphragmatic muscle flaps are both valuable and effective tools for prophylactic mediastinal reinforcement following induction therapy and pneumonectomy. In our series of patients, IF seemed to be associated with a smaller operation-related morbidity than DF, although the difference was not significant. Pedicled full-thickness diaphragmatic flaps may be indicated after induction therapy and extended pneumonectomy with pericardial resection in order to cover the stump and close the pericardial defect since they do not adversely influence pulmonary function.
Resumo:
Les pontages veineux restent actuellement un traitement de choix dans les pathologies vasculaires occlusives. Cependant, plusieurs problèmes sont liés à ce type de revascularisation. Premièrement, l'hyperplasie intimale (HI) qui cause une resténose dans 20 à 50% des pontages, conduisant à un échec de la revascularisation. Ce processus est dû à la prolifération et à la migration des cellules musculaires lisses vasculaires vers l'intima, ainsi qu'à une sécrétion de protéines de la matrice extracellulaire conduisant à un épaississement de l'intima, principalement au niveau des anastomoses. Deuxièmement, bien qu'il existe des substances connues pour inhiber l'HI, leur administration systémique répétée est associée à une augmentation de leurs effets secondaires. Aucun dispositif ne permet actuellement la libération d'une telle substance localement au site d'une anastomose vasculaire. Nous avons donc développé un hydrogel d'acide hyaluronique compatible avec une application locale au niveau des anastomoses vasculaires et pouvant être chargé en atorvastatine (ATV) (inhibiteur de la 3-hydroxy-3-methylglutaryl-CoA réductase), substance connue pour inhiber l'HI, dans le but de diminuer le fléau de la resténose. Nous avons tout d'abord testé l'effet de ce gel chargé en ATV sur la prolifération, la migration et la transmigration de cellules musculaires lisses primaires en culture provenant de veines saphènes humaines. Ensuite, nous avons étudié son effet sur différents gènes impliqués dans l'HI. Ceci a permis de montrer que l'ATV diminue la prolifération, la migration et la transmigration des cellules musculaires lisses humaines de façon similaire qu'elle soit ajoutée directement au milieu de culture ou qu'elle soit libérée par l'hydrogel chargé. De même, l'ATV régule de manière simultanée mais différentielle les gènes, en interférant avec le développement de l'HI. Nos expériences montrent que l'HI peut être diminuée in vitro grâce à cet hydrogel d'acide hyaluronique chargé en ATV. Ceci ouvre la porte au développement de futur dispositif permettant de relâcher des substances antisténotiques de façon continue, sur une durée prolongée, et in vivo.
Resumo:
The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a chief activator of mitochondrial and metabolic programs and protects against atrophy in skeletal muscle (skm). Here we tested whether PGC-1α overexpression could restructure the transcriptome and metabolism of primary cultured human skm cells, which display a phenotype that resembles the atrophic phenotype. An oligonucleotide microarray analysis was used to reveal the effects of PGC-1α on the whole transcriptome. Fifty-three different genes showed altered expression in response to PGC-1α: 42 upregulated and 11 downregulated. The main gene ontologies (GO) associated with the upregulated genes were mitochondrial components and processes and this was linked with an increase in COX activity, an indicator of mitochondrial content. Furthermore, PGC-1α enhanced mitochondrial oxidation of palmitate and lactate to CO2, but not glucose oxidation. The other most significantly associated GOs for the upregulated genes were chemotaxis and cytokine activity, and several cytokines, including IL-8/CXCL8, CXCL6, CCL5 and CCL8, were within the most highly induced genes. Indeed, PGC-1α highly increased IL-8 cell protein content. The most upregulated gene was PVALB, which is related to calcium signaling. Potential metabolic regulators of fatty acid and glucose storage were among mainly regulated genes. The mRNA and protein level of FITM1/FIT1, which enhances the formation of lipid droplets, was raised by PGC-1α, while in oleate-incubated cells PGC-1α increased the number of smaller lipid droplets and modestly triglyceride levels, compared to controls. CALM1, the calcium-modulated δ subunit of phosphorylase kinase, was downregulated by PGC-1α, while glycogen phosphorylase was inactivated and glycogen storage was increased by PGC-1α. In conclusion, of the metabolic transcriptome deficiencies of cultured skm cells, PGC-1α rescued the expression of genes encoding mitochondrial proteins and FITM1. Several myokine genes, including IL-8 and CCL5, which are known to be constitutively expressed in human skm cells, were induced by PGC-1α.
Resumo:
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Resumo:
In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.
Resumo:
The effects of diet on Longissimus muscle fatty acid composition was determined using 24 crossbred heifers of Simmental vs. Nelore and Limousin vs. Nelore. The experimental diets were: 1) corn and yeast (CY); 2) corn, cottonseed meal + meat and bones meal (CMB); 3) cassava hull and yeast (CHY); 4) cassava hull, cottonseed meal + meat and bones meal (CHMB). Feeding CHMB diets resulted in lower lipid and higher cholesterol contents (P<0.05) for both crosses. Most of the identified fatty acids were monounsaturated, and the highest percentage was found to oleic acid (C18:1w9), with values ranging from 32.54 to 46.42%. Among the saturated fatty acids the palmitic acid (C16:0) showed the highest percentage, with its contents ranging between 19.40 and 32.44%. The highest polyunsaturated/saturated fatty acid ratio was of 0.30, and the lowest was of 0.08. Feeding CY diets resulted in lower cholesterol and higher polyunsaturated fatty acid contents of the Longissimus muscle.
Resumo:
BACKGROUND: We have developed a nonviral gene therapy method based on the electrotransfer of plasmid in the ciliary muscle. These easily accessible smooth muscle cells could be turned into a biofactory for any therapeutic proteins to be secreted in a sustained manner in the ocular media. METHODS: Electrical conditions, design of electrodes, plasmid formulation, method and number of injections were optimized in vivo in the rat by localizing β-galactosidase expression and quantifying reporter (luciferase) and therapeutic (anti-tumor necrosis factor) proteins secretion in the ocular media. Anatomical measurements were performed via human magnetic resonance imaging to design a human eye-sized prototype that was tested in the rabbit. RESULTS: In the rat, transscleral injection of 30 µg of plasmid diluted in half saline (77 mM NaCl) followed by application of eight square-wave electrical pulses (15 V, 10 ms, 5.3 Hz) using two platinum/iridium electrodes, an internal wire and an external sheet, delivered plasmid efficiently to the ciliary muscle fibers. Gene transfer resulted in a long-lasting (at least 5 months) and plasmid dose-/injection number- dependent secretion of different molecular weight proteins mainly in the vitreous, without any systemic exposure. Because ciliary muscle anatomical measurements remained constant among ages in adult humans, an integrated device comprising needle-electrodes was designed and manufactured. Its usefulness was validated in the rabbit. CONCLUSIONS: Plasmid electrotransfer to the ciliary muscle with a suitable medical device represents a promising local and sustained protein delivery system for treating posterior segment diseases, avoiding repeated intraocular injections.
Resumo:
The contribution of muscle biopsies to the diagnosis of neuromuscular disorders and the indications of various methods of examination are investigated by analysis of 889 biopsies from patients suffering from myopathic and/or neurogenic disorders. Histo-enzymatic studies performed on frozen material as well as immunohistochemistry and electron microscopy allowed to provide specific diagnoses in all the neurogenic disorders (polyneuropathies and motor neuron diseases), whereas one third of myopathies remained uncertain. Confrontation of neuropathological data with the clinical indications for histological investigations shows that muscle biopsies reveal the diagnosis in 25% of the cases (mainly in congenital and metabolic myopathies) and confirm and/or complete the clinical diagnosis in 50%. In the remaining cases with non specific abnormalities neuropathological investigations may help the clinician by excluding well defined neuromuscular disorders. Analysis of performed studies and results of investigations show the contribution and specificity of each method for the diagnosis. Statistical evaluation of this series indicates that cryostat sectioning for histo- and immunochemical and electron microscopy increases the rate of diagnoses of neuromuscular diseases: full investigation was necessary for the diagnosis in 30% of the cases. The interpretation of the wide range of pathological reactions in muscles requires a close cooperation with the clinician.
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
To gain further insights into the role of T lymphocytes in immune responses against bladder tumors, we developed a method that monitors the presence of functional antigen-specific T cells in the urine of non-muscle invasive bladder cancer patients. As relatively few immune cells can usually be recovered from urine, we examined different isolation/amplification protocols and took advantage of patients treated with weekly intravesical instillations of Bacillus Calmette-Guérin, resulting in large amounts of immune cells into urine. Our findings demonstrate that, upon in vitro amplification, antigen-specific T cells can be detected by an interferon γ (IFNγ)-specific ELISPOT assay.