971 resultados para EVOLUTION SYSTEMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Li-ion rechargeable battery (LIB) is widely used as an energy storage device, but has significant limitations in battery cycle life and safety. During initial charging, decomposition of the ethylene carbonate (EC)-based electrolytes of the LIB leads to the formation of a passivating layer on the anode known as the solid electrolyte interphase (SEI). The formation of an SEI has great impact on the cycle life and safety of LIB, yet mechanistic aspects of SEI formation are not fully understood. In this dissertation, two surface science model systems have been created under ultra-high vacuum (UHV) to probe the very initial stage of SEI formation at the model carbon anode surfaces of LIB. The first model system, Model System I, is an lithium-carbonate electrolyte/graphite C(0001) system. I have developed a temperature programmed desorption/temperature programmed reaction spectroscopy (TPD/TPRS) instrument as part of my dissertation to study Model System I in quantitative detail. The binding strengths and film growth mechanisms of key electrolyte molecules on model carbon anode surfaces with varying extents of lithiation were measured by TPD. TPRS was further used to track the gases evolved from different reduction products in the early-stage SEI formation. The branching ratio of multiple reaction pathways was quantified for the first time and determined to be 70.% organolithium products vs. 30% inorganic lithium product. The obtained branching ratio provides important information on the distribution of lithium salts that form at the very onset of SEI formation. One of the key reduction products formed from EC in early-stage SEI formation is lithium ethylene dicarbonate (LEDC). Despite intensive studies, the LEDC structure in either the bulk or thin-film (SEI) form is unknown. To enable structural study, pure LEDC was synthesized and subject to synchrotron X-ray diffraction measurements (bulk material) and STM measurements (deposited films). To enable studies of LEDC thin films, Model System II, a lithium ethylene dicarbonate (LEDC)-dimethylformamide (DMF)/Ag(111) system was created by a solution microaerosol deposition technique. Produced films were then imaged by ultra-high vacuum scanning tunneling microscopy (UHV-STM). As a control, the dimethylformamide (DMF)-Ag(111) system was first prepared and its complex 2D phase behavior was mapped out as a function of coverage. The evolution of three distinct monolayer phases of DMF was observed with increasing surface pressure — a 2D gas phase, an ordered DMF phase, and an ordered Ag(DMF)2 complex phase. The addition of LEDC to this mixture, seeded the nucleation of the ordered DMF islands at lower surface pressures (DMF coverages), and was interpreted through nucleation theory. A structural model of the nucleation seed was proposed, and the implication of ionic SEI products, such as LEDC, in early-stage SEI formation was discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part 10: Sustainability and Trust

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human immune system has numerous properties that make it ripe for exploitation in the computational domain, such as robustness and fault tolerance, and many different algorithms, collectively termed Artificial Immune Systems (AIS), have been inspired by it. Two generations of AIS are currently in use, with the first generation relying on simplified immune models and the second generation utilising interdisciplinary collaboration to develop a deeper understanding of the immune system and hence produce more complex models. Both generations of algorithms have been successfully applied to a variety of problems, including anomaly detection, pattern recognition, optimisation and robotics. In this chapter an overview of AIS is presented, its evolution is discussed, and it is shown that the diversification of the field is linked to the diversity of the immune system itself, leading to a number of algorithms as opposed to one archetypal system. Two case studies are also presented to help provide insight into the mechanisms of AIS; these are the idiotypic network approach and the Dendritic Cell Algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pressure management (PM) is commonly used in water distribution systems (WDSs). In the last decade, a strategic objective in the field has been the development of new scientific and technical methods for its implementation. However, due to a lack of systematic analysis of the results obtained in practical cases, progress has not always been reflected in practical actions. To address this problem, this paper provides a comprehensive analysis of the most innovative issues related to PM. The methodology proposed is based on a case-study comparison of qualitative concepts that involves published work from 140 sources. The results include a qualitative analysis covering four aspects: (1) the objectives yielded by PM; (2) types of regulation, including advanced control systems through electronic controllers; (3) new methods for designing districts; and (4) development of optimization models associated with PM. The evolution of the aforementioned four aspects is examined and discussed. Conclusions regarding the current status of each factor are drawn and proposals for future research outlined

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El Estribo Volcanic Complex (EVC) is located in the northern part of the Michoacán–Guanajuato Volcanic Field within the Trans-Mexican Volcanic Belt (TMVB). El Estribo is located at the southern edge of the E-W Pátzcuaro fault that belongs to the Pátzcuaro-Jarácuaro graben, a western extension of the E-W Morelia–Acambay fault system. Stratigraphy, geochronology, chemistry, and mineral assemblages suggest that the volcanic complex was constructed in two periods separated by a ~ 100 ka volcanic hiatus: a) emission of lava flows that constructed a shield volcano between 126 ka, and b) mixed phreatomagmatic to Strombolian activity that formed a cinder cone ~ 28 ka. The magmas that fed these monogenetic volcanoes were able to use the same feeding system. The cinder cone itself was constructed by Strombolian fallouts and remobilized scoria beds, followed by an erosion period, and by a mixed phreatomagmatic to magmatic phase (Strombolian fallouts ending with lava flows). Soft-sedimentary deformation of beds and impact sags, cross-bedding, as well as pitting and hydrothermal cracks found in particles support the phreatomagmatic phase. The erupted magmas through time ejected basaltic andesitic lava flows (56.21–58.88% SiO2) that built the shield volcano and then basaltic andesitic scoria (57.65–59.05% SiO2) that constructed the cinder cone. Although they used the same feeding system, the geochemical data and the mineral chemistry of the magmas indicate that the shield volcano and the cinder cone were fed by different magma batches erupted thousands of years apart. Therefore, the location of El Estribo Volcanic Complex along an E-W fault that has generated two sector collapses of the shield volcano to the north may be directly linked to this complex redistribution of the magmatic paths to the surface. Our findings show that magmatic feeding systems within monogenetic volcanic fields could be long lived, questioning the classic view of the monogenetic nature of their volcanoes and yielding information about the potential volcanic risk of these settings, usually considered risk-free.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of CRISPR–cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR–cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR–Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we prove well-posedness for a measure-valued continuity equation with solution-dependent velocity and flux boundary conditions, posed on a bounded one-dimensional domain. We generalize the results of an earlier paper [J. Differential Equations, 259 (2015), pp. 10681097] to settings where the dynamics are driven by interactions. In a forward-Euler-like approach, we construct a time-discretized version of the original problem and employ those results as a building block within each subinterval. A limit solution is obtained as the mesh size of the time discretization goes to zero. Moreover, the limit is independent of the specific way of partitioning the time interval [0, T]. This paper is partially based on results presented in Chapter 5 of [Evolution Equations for Systems Governed by Social Interactions, Ph.D. thesis, Eindhoven University of Technology, 2015], while a number of issues that were still open there are now resolved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In knowledge technology work, as expressed by the scope of this conference, there are a number of communities, each uncovering new methods, theories, and practices. The Library and Information Science (LIS) community is one such community. This community, through tradition and innovation, theories and practice, organizes knowledge and develops knowledge technologies formed by iterative research hewn to the values of equal access and discovery for all. The Information Modeling community is another contributor to knowledge technologies. It concerns itself with the construction of symbolic models that capture the meaning of information and organize it in ways that are computer-based, but human understandable. A recent paper that examines certain assumptions in information modeling builds a bridge between these two communities, offering a forum for a discussion on common aims from a common perspective. In a June 2000 article, Parsons and Wand separate classes from instances in information modeling in order to free instances from what they call the “tyranny” of classes. They attribute a number of problems in information modeling to inherent classification – or the disregard for the fact that instances can be conceptualized independent of any class assignment. By faceting instances from classes, Parsons and Wand strike a sonorous chord with classification theory as understood in LIS. In the practice community and in the publications of LIS, faceted classification has shifted the paradigm of knowledge organization theory in the twentieth century. Here, with the proposal of inherent classification and the resulting layered information modeling, a clear line joins both the LIS classification theory community and the information modeling community. Both communities have their eyes turned toward networked resource discovery, and with this conceptual conjunction a new paradigmatic conversation can take place. Parsons and Wand propose that the layered information model can facilitate schema integration, schema evolution, and interoperability. These three spheres in information modeling have their own connotation, but are not distant from the aims of classification research in LIS. In this new conceptual conjunction, established by Parsons and Ward, information modeling through the layered information model, can expand the horizons of classification theory beyond LIS, promoting a cross-fertilization of ideas on the interoperability of subject access tools like classification schemes, thesauri, taxonomies, and ontologies. This paper examines the common ground between the layered information model and faceted classification, establishing a vocabulary and outlining some common principles. It then turns to the issue of schema and the horizons of conventional classification and the differences between Information Modeling and Library and Information Science. Finally, a framework is proposed that deploys an interpretation of the layered information modeling approach in a knowledge technologies context. In order to design subject access systems that will integrate, evolve and interoperate in a networked environment, knowledge organization specialists must consider a semantic class independence like Parsons and Wand propose for information modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main unresolved questions in science is how non-living matter became alive in a process known as abiognesis, which aims to explain how from a primordial soup scenario containing simple molecules, by following a ``bottom up'' approach, complex biomolecules emerged forming the first living system, known as a protocell. A protocell is defined by the interplay of three sub-systems which are considered requirements for life: information molecules, metabolism, and compartmentalization. This thesis investigates the role of compartmentalization during the emergence of life, and how simple membrane aggregates could evolve into entities that were able to develop ``life-like'' behaviours, and in particular how such evolution could happen without the presence of information molecules. Our ultimate objective is to create an autonomous evolvable system, and in order tp do so we will try to engineer life following a ``top-down'' approach, where an initial platform capable of evolving chemistry will be constructed, but the chemistry being dependent on the robotic adjunct, and how then this platform can be de-constructed in iterative operations until it is fully disconnected from the evolvable system, the system then being inherently autonomous. The first project of this thesis describes how the initial platform was designed and built. The platform was based on the model of a standard liquid handling robot, with the main difference with respect to other similar robots being that we used a 3D-printer in order to prototype the robot and build its main equipment, like a liquid dispensing system, tool movement mechanism, and washing procedures. The robot was able to mix different components and create populations of droplets in a Petri dish filled with aqueous phase. The Petri dish was then observed by a camera, which analysed the behaviours described by the droplets and fed this information back to the robot. Using this loop, the robot was then able to implement an evolutionary algorithm, where populations of droplets were evolved towards defined life-like behaviours. The second project of this thesis aimed to remove as many mechanical parts as possible from the robot while keeping the evolvable chemistry intact. In order to do so, we encapsulated the functionalities of the previous liquid handling robot into a single monolithic 3D-printed device. This device was able to mix different components, generate populations of droplets in an aqueous phase, and was also equipped with a camera in order to analyse the experiments. Moreover, because the full fabrication process of the devices happened in a 3D-printer, we were also able to alter its experimental arena by adding different obstacles where to evolve the droplets, enabling us to study how environmental changes can shape evolution. By doing so, we were able to embody evolutionary characteristics into our device, removing constraints from the physical platform, and taking one step forward to a possible autonomous evolvable system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-replication and compartmentalization are two central properties thought to be essential for minimal life, and understanding how such processes interact in the emergence of complex reaction networks is crucial to exploring the development of complexity in chemistry and biology. Autocatalysis can emerge from multiple different mechanisms such as formation of an initiator, template self-replication and physical autocatalysis (where micelles formed from the reaction product solubilize the reactants, leading to higher local concentrations and therefore higher rates). Amphiphiles are also used in artificial life studies to create protocell models such as micelles, vesicles and oil-in-water droplets, and can increase reaction rates by encapsulation of reactants. So far, no template self-replicator exists which is capable of compartmentalization, or transferring this molecular scale phenomenon to micro or macro-scale assemblies. Here a system is demonstrated where an amphiphilic imine catalyses its own formation by joining a non-polar alkyl tail group with a polar carboxylic acid head group to form a template, which was shown to form reverse micelles by Dynamic Light Scattering (DLS). The kinetics of this system were investigated by 1H NMR spectroscopy, showing clearly that a template self-replication mechanism operates, though there was no evidence that the reverse micelles participated in physical autocatalysis. Active oil droplets, composed from a mixture of insoluble organic compounds in an aqueous sub-phase, can undergo processes such as division, self-propulsion and chemotaxis, and are studied as models for minimal cells, or protocells. Although in most cases the Marangoni effect is responsible for the forces on the droplet, the behaviour of the droplet depends heavily on the exact composition. Though theoretical models are able to calculate the forces on a droplet, to model a mixture of oils on an aqueous surface where compounds from the oil phase are dissolving and diffusing through the aqueous phase is beyond current computational capability. The behaviour of a droplet in an aqueous phase can only be discovered through experiment, though it is determined by the droplet's composition. By using an evolutionary algorithm and a liquid handling robot to conduct droplet experiments and decide which compositions to test next, entirely autonomously, the composition of the droplet becomes a chemical genome capable of evolution. The selection is carried out according to a fitness function, which ranks the formulation based on how well it conforms to the chosen fitness criteria (e.g. movement or division). Over successive generations, significant increases in fitness are achieved, and this increase is higher with more components (i.e. greater complexity). Other chemical processes such as chemiluminescence and gelation were investigated in active oil droplets, demonstrating the possibility of controlling chemical reactions by selective droplet fusion. Potential future applications for this might include combinatorial chemistry, or additional fitness goals for the genetic algorithm. Combining the self-replication and the droplet protocells research, it was demonstrated that the presence of the amphiphilic replicator lowers the interfacial tension between droplets of a reaction mixture in organic solution and the alkaline aqueous phase, causing them to divide. Periodic sampling by a liquid handling robot revealed that the extent of droplet fission increased as the reaction progressed, producing more individual protocells with increased self-replication. This demonstrates coupling of the molecular scale phenomenon of template self-replication to a macroscale physicochemical effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis introduce a new innovation methodology called IDEAS(R)EVOLUTION that was developed according to an on-going experimental research project started in 2007. This new approach to innovation has initial based on Design thinking for innovation theory and practice. The concept of design thinking for innovation has received much attention in recent years. This innovation approach has climbed from the design and designers knowledge field towards other knowledge areas, mainly business management and marketing. Human centered approach, radical collaboration, creativity and breakthrough thinking are the main founding principles of Design thinking that were adapted by those knowledge areas due to their assertively and fitness to the business context and market complexity evolution. Also Open innovation, User-centered innovation and later on Living Labs models emerge as answers to the market and consumers pressure and desire for new products, new services or new business models. Innovation became the principal business management focus and strategic orientation. All this changes had an impact also in the marketing theory. It is possible now to have better strategies, communications plans and continuous dialogue systems with the target audience, incorporating their insights and promoting them to the main dissemination ambassadors of our innovations in the market. Drawing upon data from five case studies, the empirical findings in this dissertation suggest that companies need to shift from Design thinking for innovation approach to an holistic, multidimensional and integrated innovation system. The innovation context it is complex, companies need deeper systems then the success formulas that “commercial “Design thinking for innovation “preaches”. They need to learn how to change their organization culture, how to empower their workforce and collaborators, how to incorporate external stakeholders in their innovation processes, hoe to measure and create key performance indicators throughout the innovation process to give them better decision making data, how to integrate meaning and purpose in their innovation philosophy. Finally they need to understand that the strategic innovation effort it is not a “one shot” story it is about creating a continuous flow of interaction and dialogue with their clients within a “value creation chain“ mindset; RESUMO: Metodologia de co-criação de um produto/marca cruzando Marketing, Design Thinking, Criativity and Management - IDEAS(R)EVOLUTION. Esta dissertação apresenta uma nova metodologia de inovação chamada IDEAS(R)EVOLUTION, que foi desenvolvida segundo um projecto de investigação experimental contínuo que teve o seu início em 2007. Esta nova abordagem baseou-se, inicialmente, na teoria e na práctica do Design thinking para a inovação. Actualmente o conceito do Design Thinking para a inovação “saiu” do dominio da area de conhecimento do Design e dos Designers, tendo despertado muito interesse noutras áreas como a Gestão e o Marketing. Uma abordagem centrada na Pessoa, a colaboração radical, a criatividade e o pensamento disruptivo são principios fundadores do movimento do Design thinking que têm sido adaptados por essas novas áreas de conhecimento devido assertividade e adaptabilidade ao contexto dos negócios e à evolução e complexidade do Mercado. Também os modelos de Inovação Aberta, a inovação centrada no utilizador e mais tarde os Living Labs, emergem como possiveis soluções para o Mercado e para a pressão e desejo dos consumidores para novos productos, serviços ou modelos de negócio. A inovação passou a ser o principal foco e orientação estratégica na Gestão. Todas estas mudanças também tiveram impacto na teoria do Marketing. Hoje é possivel criar melhores estratégias, planos de comunicação e sistemas continuos de diálogo com o público alvo, incorporando os seus insights e promovendo os consumidores como embaixadores na disseminação da inovação das empresas no Mercado Os resultados empiricos desta tese, construídos com a informação obtida nos cinco casos realizados, sugerem que as empresas precisam de se re-orientar do paradigma do Design thinking para a inovação, para um sistema de inovação mais holistico, multidimensional e integrado. O contexto da Inovação é complexo, por isso as empresas precisam de sistemas mais profundos e não apenas de “fórmulas comerciais” como o Design thinking para a inovação advoga. As Empresas precisam de aprender como mudar a sua cultura organizacional, como capacitar sua força de trabalho e colaboradores, como incorporar os públicos externos no processo de inovação, como medir o processo de inovação criando indicadores chave de performance e obter dados para um tomada de decisão mais informada, como integrar significado e propósito na sua filosofia de inovação. Por fim, precisam de perceber que uma estratégia de inovação não passa por ter “sucesso uma vez”, mas sim por criar um fluxo contínuo de interação e diálogo com os seus clientes com uma mentalidade de “cadeia de criação de valor”

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen Reduction Reaction (ORR) requires a platinum-based catalyst to reduce the activation barrier. One of the most promising materials as alternative catalysts are carbon-based, graphene and carbon nanotubes (CNT) derivatives. ORR on a carbon-based substrate involves the less efficient two electrons process and the optimal four electrons process. New synthetic strategies to produce tunable graphene-based materials utilizing graphene oxide (GO) as a base inspired the first part of this work. Hydrogen Evolution Reaction (HER) is a slow process requiring also platinum or palladium as catalyst. In the second part of this work, we develop and use a technique for Ni nanoparticles electrodeposition using NiCl2 as precursor in the presence of ascorbate ligands. Electrodeposition of nano-nickel onto flat glassy carbon (GC) and onto nitrogen-doped reduced graphene oxide (rGO-N) substrates are studied. State of the art catalysts for CO2RR requires rare metals rhenium or rhodium. In recent years significant research has been done on non-noble metals and molecular systems to use as electro and photo-catalysts (artificial photosynthesis). As Cu-Zn alloys show good CO2RR performance, here we applied the same nanoparticle electrosynthesis technique using as precursors CuCl2 and Cl2Zn and observed successful formation of the nanoparticles and a notable activity in presence of CO2. Using rhenium complexes as catalysts is another popular approach and di-nuclear complexes have a positive cooperative effect. More recently a growing family of pre-catalysts based on the earth-abundant metal manganese, has emerged as a promising, cheaper alternative. Here we study the cooperative effects of di-nuclear manganese complexes derivatives when used as homogeneous electrocatalysts, as well as a rhenium functionalized polymer used as heterogeneous electrocatalyst.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The trend related to the turnover of internal combustion engine vehicles with EVs goes by the name of electrification. The push electrification experienced in the last decade is linked to the still ongoing evolution in power electronics technology for charging systems. This is the reason why an evolution in testing strategies and testing equipment is crucial too. The project this dissertation is based on concerns the investigation of a new EV simulator design. that optimizes the structure of the testing equipment used by the company who commissioned this work. Project requirements can be summarized in the following two points: space occupation reduction and parallel charging implementation. Some components were completely redesigned, and others were substituted with equivalent ones that could perform the same tasks. In this way it was possible to reduce the space occupation of the simulator, as well as to increase the efficiency of the testing device. Moreover, the possibility of conjugating different charging simulations could be investigated by parallelly launching two testing procedures on a unique machine, properly predisposed for supporting the two charging protocols used. On the back of the results achieved in the body of this dissertation, a new design for the EV simulator was proposed. In this way, space reduction was obtained, and space occupation efficiency was improved with the proposed new design. The testing device thus resulted to be way more compact, enabling to gain in safety and productivity, along with a 25% cost reduction. Furthermore, parallel charging was implemented in the proposed new design since the conducted tests clearly showed the feasibility of parallel charging sessions. The results presented in this work can thus be implemented to build the first prototype of the new EV simulator.