932 resultados para ENZYME IMMUNOASSAY
Resumo:
The enantiopure (1S, 2S)-cis-dihydrodiol metabolites 2B-5B have been obtained in low yield from the corresponding monosubstituted halobenzene substrates 2A-5A, using a wild-type strain of Pseudomonas putida (ML2) containing benzene dioxygenase (BDO). Benzene cis-dihydrodiol dehydrogenase (BCD) from P. putida ML2 and naphthalene cis-dihydrodiol dehydrogenase (NCD) from P. putida 8859 were purified and used in a comparative study of the stereoselective biotransformation of cis-dihydrodiol enantiomers 2B-5B. The BCD and NCD enzymes were found to accept cis-dihydrodiol enantiomers of monosubstituted benzene cis-dihydrodiol substrates 2B-5B of opposite absolute configuration. The acyclic alkene 1,2-diols 10-17 were also found to be acceptable substrates for BCD.
Resumo:
Six polyclonal antisera to chloramphenicol (CAP) were successfully raised in camels, donkeys and goats. As a comparison of sensitivity, IC50 values ranged from 0.3 ng mL(-1) to 5.5 ng mL(-1) by enzyme-linked immunosorbent assay (ELISA) and from 0.7 ng mL(-1) to 1.7 ng mL(-1) by biosensor assay. The introduction of bovine milk extract improved the sensitivity of four of the antisera by ELISA and two by biosensor assay; a reduction in sensitivity of the remaining antisera ranged by a factor of 1.1-2.6. Porcine kidney extract reduced the sensitivity of all the antisera by a factor ranging from 1.1 to 7 by ELISA and a factor of 1.5 to 4 by biosensor. A low cross-reactivity with thiamphenicol (TAP) and florfenicol (FF) was displayed by antiserurn G2 (1.2% and 18%, respectively) when a homologous ELISA assay format was employed. No cross-reactivity was displayed by any of the antisera when a homologous biosensor assay format was employed. Switching to a heterologous ELISA format prompted three of the antisera to display more significant cross-reactivity with TAP and FF (53% and 82%, respectively, using Dl). The heterologous biosensor assay also increased the cross-reactivity of D1 for TAP and FF (56% and 129%, respectively) and of one other antiserum (Gl) to a lesser degree. However, unlike the ELISA, the heterologous biosensor assay produced a substantial reduction in sensitivity (by a factor of 6 for D1). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin hormone, which potentiates glucose-induced insulin secretion. Antihyperglycaemic actions of GIP provide significant potential in Type 11 diabetes therapy. However, inactivation of GIP by the enzyme dipeptidyl peptidase IV (DPP IV) and its consequent short circulating half-life limit its therapeutic use. Therefore two novel Tyr(1)-Modified analogues of GIP, N-Fmoc-GIP (where Fmoc is 9-fluorenylmethoxycarbonyl) and N-palmitate-GIP, were synthesized and tested for metabolic stability and biological activity. Both GIP analogues were resistant to degradation by DPP IV and human plasma. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, both analogues exhibited a 2-fold increase in cAMP-generating potency compared with native GIP (EC50 values of 9.4, 10.0 and 18.2 nM respectively). Using clonal BRIN-BD11 cells, both analogues demonstrated strong insulinotropic activity compared with native GIP (P <0.01 to P <0.001). In obese diabetic (ob/ob) mice, administration of N-Fmoc-GIP or N-palmitate-GIP (25 nmol/kg) together with glucose (18 mmol/kg) significantly reduced the peak 15 min glucose excursion (1.4- and 1.5-fold respectively; P <0.05 to P <0.01) compared with glucose alone. The area under the curve (AUC) for glucose was significantly lower after administration of either analogue compared with glucose administered alone or in combination with native GIP (1.5-fold; P <0.05). This was associated with a significantly greater AUC for insulin (2.1-fold; P <0.001) for both analogues compared with native GIP. A similar pattern of in vivo responsiveness was evident in lean control mice. These data indicate that novel N-terminal Tyr(1) modification of GIP with an Fmoc or palmitate group confers resistance to degradation by DPP IV in plasma, which is reflected by increased in vitro potency and greater insulinotropic and antihyperglycaemic activities in an animal model of Type 11 diabetes mellitus.
Resumo:
A novel N-terminally substituted Pro(3) analogue of glucose-dependent insulinotropic polypeptide (GIP) was synthesized and tested for plasma stability and biological activity both in vitro and in vivo. Native GIP was rapidly degraded by human plasma with only 39 +/- 6% remaining intact after 8 h, whereas (Pro(3))GIP was completely stable even after 24 h. In CHL cells expressing the human GIP receptor, (Pro(3))GIP antagonized the cyclic adenosine monophosphate (cAMP) stimulatory ability of 10(-7)M native GIP, with an IC50 value of 2.6 muM. In the clonal pancreatic beta cell line BRIN-BD11, (Pro(3))GIP over the concentration range 10(-13) to 10(-8) M dose dependently inhibited GIP-stimulated (10(-7) M) insulin release (1.2- to 1.7-fold; P <0.05 to P <0.001). In obese diabetic (ob/ob) mice, intraperitoneal administration of (Pro(3))GIP (25 nmol/kg body wt) countered the ability of native GIP to stimulate plasma insulin (2.4-fold decrease; P <0.001) and lower the glycemic excursion (1.5-fold decrease; P <0.001) induced by a glucose load (18 mmol/kg body wt). Collectively these data demonstrate that (Pro(3))GIP is a novel and potent enzyme-resistant GIP receptor antagonist capable of blocking the ability of native GIP to increase cAMP, stimulate insulin secretion, and improve glucose homeostasis in a commonly employed animal model of type 2 diabetes. (C) 2002 Elsevier Science (USA).
Resumo:
A series of twelve benzoate esters was metabolised, by species of the Phellinus genus of wood-rotting fungi, to yield the corresponding benzyl alcohol derivatives and eight salicylates. The isolation of a stable oxepine metabolite, from methyl benzoate, allied to evidence of the migration and retention of a carbomethoxy group ( the NIH Shift), during enzyme-catalysed ortho-hydroxylation of alkyl benzoates to form salicylates, is consistent with a mechanism involving an initial arene epoxidation step. This mechanism was confirmed by the isolation of a remarkably stable, optically active, substituted benzene oxide metabolite of methyl 2-( trifluoromethyl) benzoate, which slowly converted into the racemic form. The arene oxide was found to undergo a cycloaddition reaction with 4-phenyl-1,2,4-triazoline-3,5-dione to yield a crystalline cycloadduct whose structure and racemic nature was established by X-ray crystallography. The metabolite was also found to undergo some novel benzene oxide reactions, including epoxidation to give an anti-diepoxide, base-catalysed hydrolysis to form a trans-dihydrodiol and acid-catalysed aromatisation to yield a salicylate derivative via the NIH Shift of a carbomethoxy group.
Resumo:
A series of ten cis-dihydro-diol metabolites has been obtained by bacterial biotransformation of the corresponding 1,4-disubstituted benzene substrates using Pseudomonas putida UV4, a source of toluene dioxygenase (TDO). Their enantiomeric excess (ee) values have been established using chiral stationary phase HPLC and H-1 NMR spectroscopy. Absolute configurations of the majority of cis-dihydrodiols have been established using stereochemical correlation and X-ray crystallography and the remainder have been tentatively assigned using NMR spectroscopic methods but finally confirmed by circular dichroism (CD) spectroscopy. These configurational assignments support and extend the validity of an empirical model, previously used to predict the preferred stereochemistry of TDO-catalysed cis-dihydroxylation of ten 1,4-disubstituted benzene substrates, to more than twenty-five examples.
Resumo:
Enantioenriched thiosulfinates have been obtained by dioxygenase- and chloroperoxidase-catalysed oxidation of 1,2-disulfides and dimethyl sulfoxide reductase-catalysed deoxygenation.
Resumo:
Elafin is a neutrophil serine protease inhibitor expressed in lung and displaying anti-inflammatory and anti-bacterial properties. Previous studies demonstrated that some innate host defense molecules of the cystic fibrosis (CF) and chronic obstructive pulmonary disease airways are impaired due to increased proteolytic degradation observed during lung inflammation. In light of these findings, we thus focused on the status of elafin in CF lung. We showed in the present study that elafin is cleaved in sputum from individuals with CF. Pseudomonas aeruginosa-positive CF sputum, which was found to contain lower elafin levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective in cleaving recombinant elafin. NE plays a pivotal role in the process as only NE inhibitors are able to inhibit elafin degradation. Further in vitro studies demonstrated that incubation of recombinant elafin with excess of NE leads to the rapid cleavage of the inhibitor. Two cleavage sites were identified at the N-terminal extremity of elafin (Val-5—Lys-6 and Val-9—Ser-10). Interestingly, purified fragments of the inhibitor (Lys-6—Gln-57 and Ser-10—Gln-57) were shown to still be active for inhibiting NE. However, NE in excess was shown to strongly diminish the ability of elafin to bind lipopolysaccharide (LPS) and its capacity to be immobilized by transglutamination. In conclusion, this study provides evidence that elafin is cleaved by its cognate enzyme NE present at excessive concentration in CF sputum and that P. aeruginosa infection promotes this effect. Such cleavage may have repercussions on the innate immune function of elafin.
Resumo:
Ubiquitination is a reversible posttranslational modification that is essential for cell cycle control, and it is becoming increasingly clear that the removal of ubiquitin from proteins by deubiquitinating enzymes (DUB) is equally important. In this study, we have identified high levels of the DUB USP17 in several tumor-derived cell lines and primary lung, colon, esophagus, and cervix tumor biopsies. We also report that USP17 is tightly regulated during the cell cycle in all the cells examined, being abundantly evident in G1 and absent in S phase. Moreover, regulated USP17 expression was necessary for cell cycle progression because its depletion significantly impaired G1-S transition and blocked cell proliferation. Previously, we have shown that USP17 regulates the intracellular translocation and activation of the GTPase Ras by controlling Ras-converting enzyme 1 (RCE1) activation. RCE1 also regulates the processing of other proteins with a CAAX motif, including Rho family GTPases. We now show that USP17 depletion blocks Ras and RhoA localization and activation. Moreover, our results confirm that USP17-depleted cells have constitutively elevated levels of the cyclin-dependent kinase inhibitors p21cip1 and p27kip1, known downstream targets of Ras and RhoA signaling. These observations clearly show that USP17 is tightly regulated during cell division and that its expression is necessary to coordinate cell cycle progression, and thus, it may be considered a promising novel cancer therapeutic target. Cancer Res; 70(8); 3329–39. ©2010 AACR.
Resumo:
The proto-oncogenic Ras isoforms (H, N, and K) have a C-terminal CAAX motif and undergo the same post-translational processing steps, although they traffic to the plasma membrane through different routes. Previously, we have shown that overexpression of the deubiquitinating enzyme USP17 inhibits H-Ras localization to the plasma membrane. Now we report that whereas H-Ras and N-Ras were unable to localize to the plasma membrane in the presence of USP17, K-Ras4b localization was unaffected. EGF stimulation was unable to induce N-Ras membrane localization in USP17-expressing cells. In addition, N-Ras activity and downstream signaling through the MAPK MEK/ERK and PI3K/JNK pathways were blunted. However, we still detected abundant N-Ras localization at the ER and Golgi in USP17-expressing cells. Collectively, our data showed that the deubiquitinating enzyme USP17 blocks EGF-induced N-Ras membrane trafficking and activation, but left K-Ras unaffected.
Resumo:
Mitochondrial complex I (NADH: ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide: oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Resumo:
A rapid analytical optical biosensor-based immunoassay was developed and validated for the detection of okadaic acid (OA) and its structurally related toxins from shellfish matrix. The assay utilizes a monoclonal antibody which binds to the OA group of toxins in order of their toxicities, resulting in a pseudofunctional assay. Single-laboratory validation of the assay for quantitative detection of OA determined that it has an action limit of 120 mu g/kg, a limit of detection of 31 mu g/kg, and a working range of 31-174 mu g/kg. The midpoint on the standard matrix calibration curve is 80 mu g/kg, half the current regulatory limit. Inter- and intra-assay studies of negative mussel samples spiked with various OA concentrations produced average coefficient of variation (CV) and standard deviation (SD) values of 7.9 and 10.1, respectively. The assay was also validated to confirm the ability to accurately codetect and quantify dinophysistoxin-1 (DTX-1), DTX-2, and DTX-3 from shellfish matrix. Alkaline hydrolysis was not required for the detection of DTX-3 from matrix. Excellent correlations with the data generated by the biosensor method and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were obtained using a certified reference material (R-2 = 0.99), laboratory reference material, and naturally contaminated mussel samples (R-2 = 0.97). This new procedure could be used as a rapid screening procedure replacing animal-based tests for DSP toxins.